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Visual object recognition has been extensively studied under fixation conditions, but our natural viewing involves frequent saccadic
eye movements that scan multiple local informative features within an object (e.g., eyes and mouth in a face image). These saccades
would contribute to object recognition by subserving the integration of sensory information across local features, but mechanistic
models underlying this process have yet to be established due to the presumed complexity of the interactions between the visual and
oculomotor systems. Here, we employ a framework of perceptual decision making and show that human object categorization beha-
vior with saccades can be quantitatively explained by a model that simply accumulates the sensory evidence available at each
moment. Human participants of both sexes performed face and object categorization while they were allowed to freely make saccades
to scan local features. Our model could successfully fit the data even during such a free viewing condition, departing from past stud-
ies that required controlled eye movements to test trans-saccadic integration. Moreover, further experimental results confirmed that
active saccade commands (efference copy) do not substantially contribute to evidence accumulation. Therefore, we propose that
object recognition with saccades can be approximated by a parsimonious decision-making model without assuming complex inter-
actions between the visual and oculomotor systems.
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Significance Statement

When we view an object to judge its identity or properties, we move our eyes to inspect multiple local features, gathering
dynamic information. How does object recognition unfold during this complex sequence of events? To explain object recog-
nition with saccades, should we model precisely how the visual and oculomotor systems exchange information in the brain?
Instead, we demonstrate that human object recognition can be quantitatively explained by a decision-making model that pro-
cesses each snapshot of an image sequence and simply integrates information over the course of multiple eye movements. This
model approximates human behavior without additional mechanisms, even under experimental conditions in which people
freely move their eyes to scan local features without constraint during face and object recognition.

Introduction
Object recognition is often studied as the process of extracting
object information from a static image, but during a natural visual
experience, our visual system is bombarded with frequent changes
in the retinal image due to our own eye movements. Saccadic eye
movements, which occur on average 1–3 times per second
(Otero-Millan et al., 2013), help us search for and focus on an

important object in a visual scene (Eckstein, 2011). However,
evenwhen looking at a single object, we oftenmake saccadeswithin
the object to scan multiple local features. For example, in classic
demonstrations by Yarbus (1967), people viewing a face made fre-
quent saccades across features such as eyes and mouth.

A number of studies have investigated eye movement patterns
during object viewing (Schurgin et al., 2014; Peterson et al., 2016;

Received Dec. 29, 2024; revised Aug. 16, 2025; accepted Aug. 21, 2025.
Author Contributions: Z.Z., J.H., and G.O. designed research; Z.Z. performed research; Z.Z. and J.H. analyzed

data; Z.Z. and G.O. wrote the first draft of the paper; Z.Z. and G.O. edited the paper; Z.Z. and G.O. wrote the paper.
We thank Tianlin Luo for comments on earlier versions of the manuscript. This work was supported by the National

Science and Technology Innovation 2030 Major Program (Grant No. 2021ZD0203703, G.O.), Strategic Priority Research
Program of the Chinese Academy of Sciences (XDB1010202, G.O.), Shanghai Municipal Science and Technology Major
Project (Grant No. 2019SHZDZX02), National Natural Science Foundation of China (Grant No. 32371077, G.O.), and the
National Natural Science Fund for Excellent Young Scientists Fund Program (overseas).

The authors declare no competing financial interests.
Z.Z.’s present address: CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of

Medicine, Université Laval, Quebec City, Canada.
Correspondence should be addressed to Gouki Okazawa at okazawa@ion.ac.cn.
This paper contains supplemental material available at: https://doi.org/10.1523/JNEUROSCI.2453-24.2025
https://doi.org/10.1523/JNEUROSCI.2453-24.2025

Copyright © 2025 the authors

1–18 • The Journal of Neuroscience, October 29, 2025 • 45(44):e2453242025

https://orcid.org/0000-0002-1134-869X
mailto:okazawa@ion.ac.cn
https://www.jneurosci.org/content/jneuro/suppl/2025/09/15/JNEUROSCI.2453-24.2025.DC1/JN-RM-2453-24-suppl.pdf


Hessels, 2020) and have suggested the importance of saccades
(Heisz and Shore, 2008; Schurgin et al., 2014; Hessels, 2020).
People fixate on the most informative region of an image during
face recognition (Buchan et al., 2007; Peterson and Eckstein,
2012) and adopt different saccade patterns depending on task
demands (Schurgin et al., 2014; Kanan et al., 2015; Hessels,
2020). Limiting saccades impairs object recognition and learning
performance (Henderson et al., 2005; Hsiao and Cottrell, 2008;
Hsiao and Liu, 2012). Integration of visual information across
saccades (i.e., trans-saccadic integration) has been well demon-
strated in studies using simplified stimuli such as Gabor orienta-
tions (Ganmor et al., 2015; Wolf and Schütz, 2015), color patches
(Wijdenes et al., 2015), or 2D shapes (Demeyer et al., 2009, 2010;
Herwig et al., 2015; Poth et al., 2015).

However, important questions remain to be addressed regard-
ing how eye movements contribute to object vision. First, most
existing work on trans-saccadic integration has used simple
visual features (Ludwig et al., 2014; Ganmor et al., 2015;
Wijdenes et al., 2015; Wolf and Schütz, 2015), whereas the recog-
nition of complex object images (e.g., faces) may pose different
challenges because saccades bring different complex features
(e.g., eyes and mouth) to both the fovea and periphery.
Existing models suggest that sensory evidence is integrated
even in such cases (Renninger et al., 2004, 2007; Akbas and
Eckstein, 2017), but an empirical test with natural images would
be crucial to verify this. Second, the integration during saccades
may require additional neural processes of combining visual
inputs with efference copy from the oculomotor system
(Melcher, 2007; Binda and Morrone, 2018); whether such pro-
cesses play amajor role in object recognition should also be tested
empirically. Finally, trans-saccadic integration is usually studied
under conditions in which participants are explicitly asked to
make a saccade (Demeyer et al., 2009, 2010; Ganmor et al.,
2015; Herwig et al., 2015; Poth et al., 2015; Wijdenes et al.,
2015; Wolf and Schütz, 2015). It remains to be seen whether peo-
ple integrate evidence even when they make free saccades during
object viewing.

Here, we develop a framework for measuring and modeling
object recognition behavior with saccades to address these ques-
tions. Our key innovation is to employ a theory of perceptual
decision making (Shadlen and Kiani, 2013) and study object rec-
ognition behavior as a process of accumulating sensory evidence
(Mack and Palmeri, 2011; Okazawa et al., 2018, 2021; Heidari-
Gorji et al., 2021; Luo et al., 2025). Using behavioral paradigms
with parametrically controlled object and face stimuli, we
demonstrate that a simple model that accumulates evidence of
local visual features across saccades is sufficient to quantitatively
account for participants’ behavior even when they view an image
freely. Moreover, participants’ behavioral performance was min-
imally affected by the efference copy. We conclude that object
recognition with saccades can be approximated by a parsimoni-
ous model that accumulates available sensory evidence from
dynamic retinal images without assuming complex interactions
between the visual and oculomotor systems.

Methods
Participants and experimental setup
We recruited 22 participants (age 20–40, 4males and 18 females, stu-
dents or employees of the Chinese Academy of Sciences). Our participant
sampling did not consider sex, as it was deemed unlikely to influence the
outcomes of this study. All participants had normal or corrected-
to-normal vision and were naive to the purpose of the experiment.
Written informed consent was obtained from all participants. Six of

them were dropped before the main data collection, either because of
scheduling issues or poor eye-tracking quality. All experimental proce-
dures were approved by the Institutional Review Board of the Center
for Excellence in Brain Science and Intelligence Technology (Institute
of Neuroscience), Chinese Academy of Sciences.

Nine participants performed the free saccade task (Fig. 1), while nine
performed the guided saccade task (Fig. 5). Two of them performed both
tasks. In each task, we assigned participants to perform categorization of
face identity stimuli, face expression stimuli, or car stimuli (Fig. 1A; three
participants each), but this study focused on the results consistently
observed across these stimulus conditions. Sample sizes were chosen fol-
lowing the convention of studies using psychophysical reverse correla-
tions and modeling of decision-making behavior (Okazawa et al.,
2021). We had to set our sample sizes small because we sought to collect
a large number of trials from each participant (∼3,500 trials per partic-
ipant; 63,984 total trials in this study) after extensive practice sessions
(∼2,000 training trials per participant prior to data collection) in order
to obtain as much reliable behavioral data as possible from individual
participants (Smith and Little, 2018). We performed a sensitivity analysis
for a t-test using MATLAB function sampsizepwr function. With our
sample size (9), our study had 80% power to detect a statistically signifi-
cant effect (p < 0.05) assuming a true mean difference of 0.9 and a stan-
dard deviation of 1 (Lakens, 2022).

During the experiments, the participants sat in a height-adjustable
chair in a semi-dark room. Their chins and foreheads were supported
by a chin-rest mounted on a table, which was fixed at a specific position
to ensure a stable viewing distance of 57 cm from a cathode-ray-tube
monitor (17-inch IBM P77; 75 Hz refresh rate; 1,024 × 768 pixel screen
resolution). The Psychophysics Toolbox (Brainard and Vision, 1997)
and MATLAB (MathWorks) were used to control the stimulus presen-
tation. The eye movements were monitored using a high-speed infrared
camera (Eyelink 1,000 Plus; SR Research). The gaze position was
recorded at 1 kHz.

Task designs
Face and object categorization task with free eye movement. To exam-

ine the contribution of saccades to object recognition, we designed three
versions of the object categorization task: face identity, face expression,
and car categorization (Fig. 1A). In each version of the task, participants
classified an image into one of two categories while they were allowed to
freely make saccades inside the image. The stimuli were chosen from a
morph continuum created by interpolating two prototype images, and
the participants were required to report which prototype the given stimu-
lus looked similar to. The two prototypes were male and female faces in
the identity task, happy and sad faces of the same individual in the
expression task, and two types of cars in the car task (Fig. 1A). We
used face stimuli because they allow easy definition of informative fea-
tures (i.e., eyes and mouth) and previous studies have successfully
explained face categorization during fixation conditions using an evi-
dence accumulation model (Okazawa et al., 2018, 2021). We further
designed a car categorization task to ensure that the results were not
specific to face recognition.

Participants began each trial by fixating on a fixation point (0.3° dia-
meter), which appeared randomly at one of six peripheral locations
(11.5° away from the screen center for the face tasks, 8° for the car
task; Fig. 1B). After a short delay (400–700ms, truncated exponential dis-
tribution), a stimulus appeared at the center of the screen. The random-
ized fixation point locations were intended to minimize bias in the
location that participants initially looked at in the image (Arizpe et al.,
2012; Peterson and Eckstein, 2012). Participants then had to make a sac-
cade in the stimulus within 500ms of its appearance. The stimulus was
kept ambiguous (halfway between the two prototypes on the morph con-
tinuum) and thus uninformative until the participants made a saccade.
After fixation, the stimulus was replaced with a face image of the morph
level chosen for the trial. The participants were then allowed to look at
any place in the image, but if their fixation left the image, the trial was
aborted. Participants reported the category of the stimulus by pressing
one of two keyboard buttons whenever they were ready [reaction time
(RT) task]. The stimulus was extinguished immediately when the button
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was pressed. If the participants did not make a decision within 5 s, the
trial was aborted. In total, 1.75% of trials were aborted either due to
fixation breaks during stimulus presentation or time out. Auditory feed-
back was provided for correct and incorrect decisions. If the stimulus was
ambiguous (halfway between the two prototypes on the morph contin-
uum), the correct feedback was provided in a random half of the trials.
Following feedback, the next trial began after a 1 s inter-trial interval.

We created each stimulus set by continuously morphing two proto-
type images using a custom-made program (Okazawa et al., 2021). The
prototypes for the expression task were obtained from the Nim Face set
(Tottenham et al., 2009), and the prototypes for the identity task were
obtained from the Tsinghua Facial Expression Database (Yang et al.,
2020). The face images shown in the figures of this paper were from these
databases and presented with permission. The prototypes for the car task
were generated by authors using Midjourney (https://www.midjourney.
com) with prompts such as “Clean and minimalist product photography
of a white SUV with soft edges, highlighting its sleek and modern
design.” We then used Photoshop (Adobe) to edit the image parts that
were difficult to morph, such as the steering wheels, to create a natural-
istic morph continuum. Our program generated the morphed interme-
diates of the two prototypes by linearly interpolating the positions of
manually defined anchor points on the prototypes and textures within
the tessellated triangles defined by the anchor points. The linear weights
for the two prototypes determined the morph level of an image (ranging
from −100 to 100%, where the two extremes corresponded to the two
prototypes). In each trial, we chose an average morph level from −96,
−48, −24, −12, −6, 0, 6, 12, 24, 48, and 96%. For participants with higher
performance, we also added −3 and 3% morph levels.

Our algorithm could morph local stimulus features independently.
For face images, we manually circumscribed the regions containing the
eyes and mouth and morphed only the inside of the regions (Fig. 1A).
Similarly, for the car images, we manually defined the front and rear
regions (Fig. 1A). The regions outside these features were maintained
halfway between the two prototypes and thus remained uninformative.
For face images, because the regions outside the eyes and mouth show
a limited contribution to judgments (Schyns et al., 2002; Okazawa et
al., 2021), this segmentation of informative and uninformative regions
was unlikely to influence participants’ behavior. For the car images,
the front and rear parts were split at the midline (Fig. 1A), but the two
prototypes were mostly different around the hood (bonnet) and the
rear window. While the choice of prototype images would affect which
parts become informative, we do not consider that this choice affected
the main conclusions of this study. We could also independently adjust
the full dynamic range of the morph line for each feature. This adjust-
ment was made when we realized that the participant relied heavily on
(kept looking at) one feature during training. We gradually decreased
the range of the over-sampled features up to 50% while confirming
that the participant’s overall performance was maintained. Once the
main data collection began, we did not make any adjustments.

To examine how each object feature contributed to the participants’
decisions, we added random temporal fluctuations of the morph level to
the individual features in each trial. The mean morph level was fixed
within a trial and matched between the two features, but the morph level
of a feature was randomly updated every 106.7ms (eight monitor frames
of the 75Hz display) drawn from a Gaussian distribution with an SD of
20%. When the drawn number exceeded+100%, it was resampled. The
106.7ms fluctuation duration provided us with sufficiently precise mea-
surements of the participants’ temporal weighting in their ∼1 s decision
time, while the duration was sufficiently long to ensure a subliminal tran-
sition of the morph levels from one image to another. Between two
morphed face images, we interleaved a noise mask (phase randomization
of the 0% morph face) with a smooth, half-cosine transition function
during the eight monitor frame (Okazawa et al., 2021). More specifically,
during each of the eight-frame cycle, a face image was first shown with-
out a mask for one monitor frame (13.3ms). Then, it gradually faded out
over the next seven frames as a mask image faded in. For these frames,
the mask and the face images were linearly combined, pixel by pixel,
according to a half-cosine weighting function, so that in the last frame,
the weight of the mask was 1 and the weight of the face image

was 0. Immediately afterward, a new face frame with new morph levels
was shown, followed by another cycle of masking, and so forth. This
masking procedure minimized the chance that participants noticed
fluctuations in morph levels during stimulus presentation. Movie 1
shows an example of our dynamic face stimuli.

In each trial, the stimulus fluctuations started only after the partici-
pants made a saccade into the stimulus. Prior to the saccade, participants
fixated on a fixation point placed peripherally (8–11.5° away from the
image). During this period, the stimulus remained uninformative (0%
morph). Thus, the participants could start judging the stimulus category
only after fixating on it. Exactly at the moment of saccade to a stimulus,
the stimulus underwent a sudden change in the morph level, but no par-
ticipants noticed this change. Since the stimulus fluctuations started only
after fixation on the image, psychophysical kernels (Figs. 3E and 4) were
aligned to the timing of the participant’s fixation on the stimulus rather
than the timing of the actual stimulus onset.

We determined the stimulus sizes in our tasks to characterize human
object recognition behavior under natural conditions. We thus set the dis-
tance between the two informative features (eyes and mouth for face sti-
muli, and front and rear parts of car stimuli) to be five visual degrees
apart. This is approximately the size thatwe experiencewhen seeing objects
and faces at natural distances (McKone, 2009). Under this constraint, the
full stimulus size was ∼9.3° × 11° (W×H) for the identity task, ∼9.4° ×
13.6° for the expression task, and ∼7° × 2.8° for the car task. We expect
that participants’ saccade patterns would be greatly affected by stimulus
size (von Wartburg et al., 2007; Otero-Millan et al., 2013). For example,
participants would cease making saccades when the stimulus becomes
too small. However, our primary goal was to study the effect of saccades
under conditionswith naturalistic object sizes,where saccadeswould spon-
taneously occur, and we believe that our conclusions hold as long as they
are tested under such naturalistic ranges (see Discussion). We also
confirmed that, according to the human contrast sensitivity function
(CSF), the unfixated feature retained the information about the stimulus
category while participants fixated on the other feature (Fig. S1C–D,
Peterson and Eckstein, 2012; Or et al., 2015).

We recruited nine participants for the free saccade tasks, of whom
three each were randomly assigned to perform each of the three catego-
rization tasks (31,128 trials in total; 3,459 ± 106 trials per participant).
Prior to the main data collection, the participants underwent extensive
training (on average 2,000 trials) to ensure stable behavioral accuracy.
During training, we informed the participants that the images contained

Movie 1. An example image sequence similar to those used in the experiments. The
sequence consists of face images interleaved by masks. For each face image, the morph levels
of two facial features (eyes and mouth) fluctuated around the mean morph level for the trial
(Fig. 1B inset). The masks made these stimulus fluctuations subliminal. Note that the size and
frame rate of the video do not accurately represent the stimuli used in the experiments.
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multiple informative features for categorization and encouraged them to
use multiple features to solve the task. However, we did not directly ask
them to make eye movements or to look at particular parts of an image.

Guided saccade task. To examine whether oculomotor commands
are necessary for feature integration, we designed a guided saccade
task in which participants categorized objects with or without a saccade
(Fig. 5A). In the saccade condition (Fig. 5B), we instructed participants to
make a saccade during the stimulus presentation by moving the fixation
point from one region to another. In the no-saccade condition (Fig. 5E),
participants maintained fixation while the stimulus position suddenly
moved, mimicking the change in retinal input resulting from a saccade.
Similar to the free saccade task, we used face identity, expression, and car
categorization conditions with the same stimuli and categorization rules.

In the saccade condition, participants initially viewed a fixation point
that appeared at one of two locations near the center of the screen. The
two locations corresponded to the location of the two informative fea-
tures of a stimulus shown shortly afterward (eyes or mouth in the face
tasks, front or rear in the car task). There was a variable delay between
the participant’s fixation onset and stimulus onset (400–700ms, trun-
cated exponential distribution). Immediately after the stimulus onset,
the fixation point shifted to the location of the other informative feature,
and participants had to make a saccade to this location in between 100
and 400ms. After sufficient training, participants could consistently
make a saccade with ∼200ms latency (timeout: 5.1% of trials). After
the saccade, the stimulus continued for another 213.4ms; thereafter, it
disappeared together with the fixation point, and the participants had
to report their decision by pressing a keyboard button within 1 s (time-
out: 1.5% of trials). These brief stimulus presentations replicated previ-
ous studies that investigated trans-saccadic integration (Ganmor et al.,
2015) and were ideal for testing the temporal integration of evidence
because behavioral performance is likely to saturate with longer stimulus
duration (Kiani et al., 2008).

In separate blocks, we performed the no-saccade condition, which
mimicked the change in retinal input during the saccade condition with-
out asking participants to make an actual saccade (Fig. 5E). In this con-
dition, the fixation point remained in the same place, but a stimulus
briefly appeared with one feature centered at the fixation point, and after
a brief blank period, it reappeared with the other feature centered at the
fixation point. Thus, the condition approximated what the participants
would have seen during the saccade condition. The duration of the
first stimulus presentation and the blank were randomly sampled from
the distribution of the saccade latency (170.0 ms ± 5.3 ms) and saccade
duration (53.5 ms ± 1.3 ms) obtained in the main condition for each par-
ticipant. To obtain these numbers, we first collected half of the data for
the saccade condition. Subsequently, we collected the remaining half
together with the no-saccade condition in the same sessions to ensure
that each participant’s training level was similar between the two
conditions.

In the saccade and no-saccade blocks, we also included trials in which a
stimulus was shown only before or after a saccade/stimulus jump (Fig. 5B,
E). In these trials, we removed/displayed a stimulus contingent on the tim-
ing of the participant’s saccade (either “Pre only” or “Post only” trials in
Fig. 5B, E, right). These trials were randomly interleaved with the main
condition in which a stimulus was shown in both periods (“Both” trials;
Fig. 5B, E, left). This allowed us to test whether participants’ performance
improved when a stimulus was present both before and after a saccade,
indicating the integration of evidence across saccades.While the full stimu-
lus duration in “Both” trials was longer than that in “Pre only” or “Post
only” trials, participants could only make use of this longer presentation
time by integrating evidence across saccades. Thus, this form of compari-
son has been often used for the test of trans-saccadic integration (Ganmor
et al., 2015; Wolf and Schütz, 2015).

The stimulus morph levels fluctuated in this task, similar to those in
the free saccade task. Because the morph levels were updated every 106.7
ms (eight monitor frames, during which a stimulus imagemade a smooth
transition to a noise mask; see above), approximately two cycles of
fluctuations occurred before a saccade, as the saccade latency was, on
average, ∼170ms. After the saccade, we reset the fluctuation cycle such

that one cycle starts immediately after the saccade landing, ensuring con-
sistency in the pattern of stimulus-mask cycles before and after the sac-
cade. The post-saccade stimulus fluctuations continued for two cycles
(213.4ms) before the stimulus was terminated. As in the free saccade
task, fluctuations occurred independently for the two informative fea-
tures, whereas the average morph level was the same for the two features
and was constant during the trial. The average morph levels were chosen
from −96, −48, −24, −12, −6, 0, 6, 12, 24, 48, and 96%. For participants
with higher performance, we added −3 and 3% morph levels.

Nine participants performed this guided saccade task, of whom three
each was randomly assigned to the facial identity, expression, or car cat-
egorization conditions (32,856 trials in total; 3, 651 ± 68 trials per partic-
ipant). Prior to the main data collection, the participants underwent
extensive training (on average 2,000 trials) to ensure stable saccade
latency and behavioral accuracy.

Data analysis
Detection of cross-feature saccades and quantification of saccade

patterns. Saccades were detected from the 1 kHz eye-tracking data using
the Eyelink 1,000 Plus’ default saccade detection parameters with addi-
tional criteria (Larsson et al., 2013) to ensure accuracy. We first applied
a small smoothing (a Gaussian filter with 3ms standard deviation) to the
tracking data to remove high-frequency noise and then detected the tim-
ings of eye traces with a velocity exceeding 30°/s for 4ms and acceleration
exceeding 8,000°/s2 for 2ms. These timings were considered potential
saccade onsets. We then estimated the end time of these potential
saccades by looking for the time when the velocity fell below 20°/s for
2ms. Finally, we classified them as saccades if their duration was longer
than 6ms and they were observed at least 20ms after the last saccade
(Larsson et al., 2013). Through manual inspection, we confirmed that
these parameters accurately detected saccades. In rare cases, noise in
the eye traces led to the false detection of saccades, which were removed
during manual inspection.

Our key objective was to examine how large saccades spanning mul-
tiple features in an image contribute to the integration of evidence across
features. We thus focused on these cross-feature saccades in our main
analyses.We considered a saccade a cross-feature if it satisfied the follow-
ing criteria. (1) The saccade start point was inside or near the region of
one feature (<1.5° for the face tasks and <0.5° for the car task) and its end
point was inside or near the region of the other feature. These numbers
were chosen based on manual inspection of eye movement patterns. The
region for each feature was manually circumscribed (Fig. S1B), and the
average gaze positions were calculated 50ms before and after the saccade
to determine whether they were near or inside the regions. The distance
to a feature was defined as the minimum Euclidean distance between the
gaze position and any point on the manually drawn contour line of the
feature. (2) The amplitude of the saccade was greater than 2°. This second
criterion ensured that the saccade was not small enough to occur right
around the boundary of the two features but was large enough to cause
a considerable change in the retinal input. The number was determined
through the manual inspection of saccade patterns and the distribution
of saccade amplitudes (Fig. 2E). (3) The saccade started at least 50ms
after the participant fixated on the stimulus and at least 50ms before
the participant’s response. This condition ensured that it occurred dur-
ing decision formation.

To examine how stimulus fluctuations influenced the participants’
decisions depending on their gaze positions, we defined the fixated and
unfixated features in each cycle of stimulus fluctuations in several analyses
(Figs. 3, 4, and S3C–D). We first averaged eye positions within each of the
106.7ms fluctuation cycles and then checked whether the averaged posi-
tion was inside or near (<1.5° for the face tasks and <0.5° for the car
task) the region of a feature circumscribed manually. If so, the feature
was defined as fixated, whereas the other feature was defined as unfixated.
This definition follows the criteria used to define cross-feature saccades
above. If the average eye position was outside the range of both features,
the fixated feature was not defined, and the corresponding cycle of stimulus
fluctuations was excluded from the analysis. A fluctuation cycle was also
excluded if there was a cross-feature saccade within this period.
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During quantitative analyses and model fitting (Figs. 3G, 4, S3E, S4,
and S5), we also calculated the distance between the participant’s gaze
position and each object feature each time in a trial. This distance fol-
lowed the definition described above as the minimum Euclidean distance
between the gaze position and any point on the contour line circumscrib-
ing the region of the informative feature (Fig. S1B). If the gaze position
was within the circumscribed region, the distance was set to zero.
Thus, this definition is agnostic of where the exact center of the informa-
tive features is.

Psychometric and chronometric functions. To quantify behavioral
performance in the free saccade task, we fitted the following logistic func-
tion to the choice data of each participant for each stimulus condition
(Fig. 1C, top):

logit P(choice 2)[ ] = a0 + a1s, (1)

where logit(p) = log(p/1− p), s is the nominal stimulus strength of a trial
ranging from −1 (−100% morph level) to +1 (+100% morph level), and
αi are regression coefficients. α0 quantifies the choice bias and α1 quan-
tifies the slope of the psychometric function.

The relationship between stimulus strength and the participants’mean
RTs was assessed using a hyperbolic tangent function (Fig. 1C, bottom):

T = b0

s
tanh(b1s)+ b2, (2)

whereT is themean RTs in seconds and βi indicates themodel parameters.
β0 and β1 determine the stimulus-dependent changes in RTs, whereas β2
quantifies the portion of RTs independent of the stimulus strength.

Behavioral performance in the guided saccade task (Fig. 5) was quan-
tified using the following logistic function:

logit P(correct)[ ] = a1s+ a2(s · I), (3)

where an indicator variable, I, was used to quantify the difference in the
slope of the psychometric functions between two conditions. For exam-
ple, when we compared behavioral performance between the “Both” and
“Pre only/Post only” conditions in the guided saccade task (Fig. 5B, E), I
was set to 1 in the former condition and 0 in the latter condition. We
fitted the above function to individual participants’ data and examined
the performance difference between conditions by testing if α2 was sign-
ificantly different from 0 using t-test across participants. The function
did not have a bias term because it was fit to the probability of correct,
which is 0.5 at zero stimulus strength by definition.

Joint psychometric functions of features across saccades. To directly
test whether participants used fixated features before and after cross-
feature saccades, we plotted their choice performance as a function of
the morph levels of these features (Fig. 3A–C). For example, if a partic-
ipant first fixated on the eye region and thenmade a saccade to themouth
region before committing to a choice, we computed the average morph
fluctuations in the eye region before the saccade as well as the average
in the mouth region after the saccade (Fig. 3A). We then projected
each trial in a 2D space defined by the morph levels before and after a
saccade. In this space, we computed the probability of choice of the trials
in a Gaussian window with a standard deviation of 5% and visualized the
probability of choice by drawing iso-probability contours at 10% inter-
vals (Fig. 3B). Similarly, if a participant made two cross-feature saccades,
we plotted their performance as a function of the first, second, and third
fixation features (Fig. 3C). Since the participants made fewer than three
cross-feature saccades in most trials (Fig. 2F), we did not consider trials
with more saccades.

To test the significance of the influence of each fixated feature on par-
ticipants’ choices, we performed the following logistic regression for tri-
als with one cross-feature saccade:

logit P(choice 2)[ ] = w0 + w1s1 + w2s2 + w1,2s1s2, (4)

where s1 and s2 correspond to the morph levels of the features fixated the
first and second times in a trial, respectively. w0 quantifies choice bias, w1

andw2 are linear coefficients, whereasw1,2 is a coefficient of themultiplica-
tive interaction term. For trials with two cross-feature saccades, we used:

logit P(choice 2)[ ] = w0 + w1s1 + w2s2 + w3s3
+ w1,2s1s2 + w1,3s1s3 + w2,3s2s3
+ w1,2,3s1s2s3,

(5)

where s1, s2, and s3 corresponded to the morph levels of the features fixated
first, second, and third times in a trial. We performed regression using all
trials within individual participants and performed a two-tailed t-test across
participants to test the significance of the contribution of each feature.

Psychophysical reverse correlation. To test whether features at differ-
ent points in time across saccades affected the participants’ choices, we
performed psychophysical reverse correlations (Ahumada, 1996;
Okazawa et al., 2018; Figs. 2H, 3, 4, 5, and S3–S6). Psychophysical kernels
[Kf(t)] were calculated as the difference in the average fluctuations of
morph levels conditional on the participant’s choices:

Kf (t) = E[s f (t) | choice 1]− E[s f (t) | choice 2], (6)

where sf(t) represents the morph level of feature f at time t. This reverse
correlation analysis was originally proposed to reveal perceptual tem-
plates of linear observers seeing images containing pixel-level white noise
(Murray, 2011). By contrast, our reverse correlation was performed using
random fluctuations of the morph levels of object images, which were
highly non-linear with respect to pixel-level inputs. However, we have
previously confirmed that the morph levels created using our method
almost linearly mapped onto estimated subjective evidence (Okazawa
et al., 2018); thus, as long as we are concerned with the relationship
between the morph levels and participants’ performances, we consider
that the analysis largely satisfies the original assumption of linear observ-
ers. This analysis only used trials with low stimulus strength (nominal
morph level, 0–12%). For the non-zero strength trials, the mean strength
was subtracted from the fluctuations, while the residuals were used for
the reverse correlation. In Figure 2H, we averaged the kernels for each
feature over time when the participants viewed the feature. For the
guided saccade tasks (Fig. 5D, G), we averaged the two cycles of stimulus
fluctuations both before and after the saccade to calculate the kernels (but
see Fig. S6G, H for unaveraged kernels).

When plotting the time course of psychophysical kernels (Figs. 3E, 4,
and S3–S5), we sorted individual stimulus fluctuations depending on
which feature the participant fixated on during that cycle of fluctuations,
and then generated kernels for the fixated and unfixated features. When a
participant’s gaze position could not be classified into a feature or a cross-
feature saccade occurred during a cycle of fluctuation, it was excluded
from the analysis. Since the stimulus fluctuation started when partici-
pants fixated on an image (see above), the kernels aligned to stimulus
onset started from the moment of fixation and were calculated up to
the first cross-feature saccade or up to 1 s in the trials without saccades.
The kernels aligned to the participants’ responses were calculated using
stimulus fluctuations after the last cross-feature saccade or using the
fluctuations for 1 s from the response when there was no saccade in a
trial. For the kernels aligned to saccades, we used five stimulus cycles
before and after the saccade onset. Figure 4D shows an example trial
with only one saccade, but if there were more than one cross-feature sac-
cade, all were used when computing the kernels. For the kernels shown in
Figures 3E and 4, we averaged the kernels across all participants. The ker-
nels of the individual participants can be found in Figure S4. Three-point
boxcar smoothing was applied to the temporal kernels for denoising.
However, we did not perform smoothing when evaluating the fitting
quality (R2).

To further quantify how gaze position modulated the contribution of
local features to decisions, we realigned the same stimulus fluctuations
according to the distance between the participants’ gaze position and
each feature location (Fig. 3F, G). As explained in the “Detection of cross-
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feature saccades and quantification of saccade patterns” section above,
we averaged the gaze positions during each cycle of stimulus fluctuation
and computed its distance from any point on the counter line circum-
scribing the region of each feature (Fig. S1B). If the gaze position was
within the circumscribed region, the distance was set to zero. If a saccade
occurred during one cycle of stimulus fluctuation, the fluctuation was
excluded from the analysis. We then sorted the fluctuations according
to the calculated distance and generated psychophysical kernels at each
distance d as:

Kf (d) = E[s f (d) | choice 1]− E[s f (d) | choice 2], (7)

where sf(d) is the morph fluctuation of feature f at distance d. This was
calculated using stimulus cycles concatenated across the trials with low
stimulus strength (nominal morph level, 0–12%) within individual
participants.

Calculation of saccade frequency and probability. We calculated the
frequency of participants’ saccades for each stimulus strength to test
any potential dependence on stimulus difficulty (Fig. 6B). Frequencies
could not be simply estimated by dividing saccade counts by trial dura-
tion (i.e., RTs) because saccades tended to be periodic. Suppose that sac-
cades occur every 400ms regardless of stimulus strength. If the average
RT was 500ms for one stimulus and 700ms for another, saccade counts
are expected to be one per trial, and thus, saccade counts per time tend to
be underestimated for stimuli with longer RTs. Therefore, we had to
match the RT distributions across stimulus strengths for a proper com-
parison. We generated RT histograms with 100ms intervals and per-
formed histogram matching by randomly subsampling trials from each
stimulus strength.We then counted the total number of saccades in these
subsampled trials and divided this number by the total stimulus duration
across the trials. The frequencies were calculated in this manner for indi-
vidual participants and then averaged (Fig. 6B).

We further took an alternative approach to estimate saccade fre-
quency without matching RT distributions (Fig. 6C). In this method,
we calculated the number of saccades that occurred at each time point
(100ms bins) and divided it by the number of trials whose RT was longer
than that time point. This saccade probability is not affected by the inter-
action of RTs and saccade timing outlined above because this metric does
not depend on the duration of trials after each time point to compute the
probability. However, the results can be noisy, particularly for later time
points, because fewer trials contribute to the calculation. We therefore
classified trials into two groups (easy: >20% morph level, difficult:
<20%) to perform this analysis.

Model fit and evaluation
To quantitatively examine whether the participants’ choice behavior dur-
ing the free saccade task could be explained by the integration of sensory
evidence over saccades, we constructed a simple extension of evidence
accumulation models widely used to explain behavioral data in a variety
of perceptual decision-making tasks (Shadlen and Kiani, 2013; Okazawa
et al., 2021). We also developed multiple alternative models to confirm
that no alternative mechanisms account for the behavioral data. In
what follows, we first describe the expression and fitting procedure for
the main model and then extend them to the alternative models.

Main model. Our main model is an extension of the drift-diffusion
model, which considers multiple informative image features and their
distances from the participants’ gaze positions (Fig. 4A). The model
was extended from that of a previous study that was demonstrated to
accurately explain human face categorization behavior measured under
stable fixation conditions (Okazawa et al., 2021). This previous model
first linearly integrates the fluctuations of the local features [si(t) for fea-
ture i at time t]:

m(t) =
∑N
i=1

ki · si(t), (8)

where μ is momentary evidence for the model, N is the number of fea-
tures, and ki is the sensitivity parameter for each feature i. Momentary
evidence is then accumulated over time to form the decision variable
(v) at each time t as:

v(t) =
∫t
0
m(t)+ h(t) dt, (9)

where η(τ) represents internal (neural) noise in the sensory, inference, or
integration processes, assumed to follow a Gaussian distribution with
mean 0 and SD σ(t). When the decision variable [v(t)] reaches an upper
or lower bound (+B or −B), the model commits to a decision associated
with the bound. RT was defined as the time required to reach a bound
plus a non-decision time including sensory and motor delays. The non-
decision time was drawn from a Gaussian distribution with a mean of T0

and an SD of sT0 .
Our present model extends the above formalism by incorporating

participants’ gaze positions as a factor that influences the informative-
ness of local features (Krajbich et al., 2010; Tavares et al., 2017; Yang
and Krajbich, 2023). We added one free parameter (λ) that quantified
the degree to which the informativeness of each feature decays as a func-
tion of the distance from the gaze position (i.e., visual eccentricity). The
decay was expressed as an exponential function based on the previous
studies that successfully modeled visual acuity as a function of visual
eccentricity (Peli et al., 1991; Peterson and Eckstein, 2012). We also
tested a linear decay function and confirmed that it yielded similar results
(Fig. S5B). In the exponential model, Equation 8 was modified as:

m(t) =
∑N
i=1

ki · e−ldi(t) · si(t), (10)

where di(t) is the Euclidean distance (in units of visual angle) between the
gaze position and object feature i at time t. As mentioned above, the dis-
tance was defined as the minimum length between the gaze position and
any point on the counter line manually drawn to circumscribe each fea-
ture (Fig. S1B). If the gaze position was inside the circumscribed region,
the distance was set to zero. During the saccades, both momentary evi-
dence and diffusion noise were set to zero to simulate the absence of
visual input.

Once the momentary and accumulated evidence is defined as above,
we can numerically derive the probability that the decision variable has
value v at time t by solving the Fokker–Planck equation:

dp(v, t)
dt

= − d

dv
m(t)+ 0.5

d2

dv2
s2(t)

[ ]
p(v, t), (11)

where p(v, t) denotes the probability density. The accumulation process
started from zero evidence and continued until the decision variable
reached one of the two bounds (±B), indicating two choices. Thus, the
partial differential equation above has the following initial and boundary
conditions:

p(v, 0) = d(v),
p(+ B, t) = 0,

(12)

where δ(v) denotes the Dirac delta function. The diffusion noise [σ(t)]
was set to 1, and the bound and drift rate were defined in a unit of diffu-
sion noise. The RT distribution for each choice was obtained by convolv-
ing the distribution of bound crossing times with the distribution of
non-decision time (a Gaussian distribution with a mean of T0 and an
SD of sT0 ). The SD, sT0 , was always set to one-third of T0 to reduce
the number of free parameters.

Overall, our main model had five degrees of freedom: decision bound
height (B), sensitivity parameters for two features (k1, k2), mean non-
decision time T0, and the decay rate of visual sensitivity λ. We fit the
model parameters by maximizing the likelihood of the joint distribution
of the observed choices and RT distributions of individual participants in
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each stimulus condition (Okazawa et al., 2018). Given a set of parame-
ters, the stimulus fluctuations and participant’s gaze points in each trial
were used to calculate the RT distributions of the two choices according
to the model formulation above. These distributions were used to calcu-
late the log-likelihood of the observed choice and RT for individual trials.
These log-likelihoods were summed across the trials to calculate the like-
lihood function for the dataset. We used a simplex search method ( fmin-
search in Matlab) to determine the parameter set that maximized the
summed likelihood. To avoid local maxima, we repeated the fitting pro-
cess from multiple initial parameter sets and selected the set that con-
verged to the largest likelihood as the final result. Because maximum
likelihood estimation is sensitive to outliers, we excluded trials with reac-
tion times greater than three SDs from the mean for each stimulus
strength during model fitting. Fitting was performed for each participant
and included the trials with all stimulus strengths. The fitting perfor-
mance was quantified using the coefficient of determination (R2) for
the joint distributions of choices and RTs. For each morph level, we gen-
erated the RT distribution for each choice (bin size, 100ms) and com-
puted the R2 between the data and model outputs after concatenating
the bins for all morph levels and choices. The fitting curves shown in
Figure 4B–D are the averages across participants.

Alternative models. To examine whether different mechanisms
accounted for the behavioral data, we developed multiple alternative
models. They included the “gaze-independent” model, which had cons-
tant sensitivity to each local feature regardless of the participant’s gaze
position, the “evidence-reset” model, which resets the accumulated evi-
dence every time the participant makes a cross-feature saccade, and
the “independent-accumulator” model, which does not integrate evi-
dence across saccades but accumulates the evidence from two features
independently. These models were fitted to the behavioral data using
the aforementioned procedure.

The gaze-independent model was designed to test whether the infor-
mation of participants’ gaze positions was necessary to account for their
behavior. In our main model, the sensitivity to each feature was modu-
lated according to the distance between the gaze position and the feature
(Eq. 10), whereas the gaze-independent model removed this term and
computed momentary evidence assuming that the sensitivity to each fea-
ture is constant regardless of gaze position (thus using Eq. 8) to deter-
mine the drift rate. The other components of the model were the same
as those used in our main model. This model has one fewer parameter
(four) than our main model.

The evidence-reset model was created to test the possibility that,
when sensory evidence from one feature was insufficient to form a deci-
sion, people would make a saccade to the other feature and restart their
decision-making process. To simulate this, the model resets the accumu-
lated evidence to zero after a cross-feature saccade. Thus, the choices and
RTs of the model were based solely on the feature fixated on after the last
cross-feature saccade in a trial. To fit this model, we extracted the timing
of the last cross-feature saccade and the feature fixated afterward from
each trial and simulated the bounded evidence accumulation using
them to predict the choice and RT of that trial. The model was equivalent
to our main model if a trial did not contain a cross-feature saccade. The
model becomes unrealistic when the last cross-feature saccade was too
close to the RT of a trial; we thus did not count saccades that occurred
within the mean non-decision time (i.e., T0) from the RT. Note that
we only excluded these saccades close to RTs but did not exclude any tri-
als, thus the comparison with the main model was performed using all
trials. Besides this resetting mechanism, all components of our main
model, including the sensitivity of each feature and the dependency of
sensitivity on the gaze positions, were preserved in this model. The num-
ber of parameters in this model is the same as that in our main model.

The independent-accumulator model tested the possibility that the
evidence was not integrated across saccades. Instead, it independently
accumulated evidence for the two features and committed to a choice
based on evidence from one of them that reached a bound earlier. The
evidence for a feature was accumulated when the feature was fixated,
whereas the accumulated evidence stayed frozen when the feature was
not fixated. To implement this, we classified each time of each trial

into one of the two features based on the participants’ eye positions
and then simulated the evidence accumulation process for each feature.
The model had five parameters.

To test fit performance, we computed the difference in the Bayesian
information criterion (ΔBIC) between the main model and each of
the alternative models (Figs. 4 and S5; positive values indicate poorer fits
of the alternative models). For each model, we summed the log-likelihood
of all trials and averaged the sum across participants to derive the BIC.
When fitting and evaluating the evidence-reset and independent-
accumulator models, the likelihood involved both the probability that
they reached a decision at the observed RT after the last saccade and the
probability that they did not reach a decision before the last saccade.
This is consistent with the definition of the likelihood for the main model,
which was based on the probability of reaching a decision at the observed
RT without reaching a decision bound at any other point from stimulus
onset.

Generation of model psychophysical kernels and RT distributions.
The models above were fit to the choices and RTs, but the model formu-
lation does not prescribe its psychophysical kernel. Therefore, we relied
on simulations to estimate the model kernels. We created 105 simulated
trials with stimulus strengths ranging from 0 to 12% using the same sti-
mulus distributions as in the main task (i.e., Gaussian distribution with
20% SD). The model responses for these trials were simulated using the
same parameters fitted for each participant. We then used the simulated
choices and RTs to calculate model psychophysical kernels, following the
same procedure used for the human data (Fig. 4D, F, H, J, S4, and S5).
Thus, the model kernels were not directly fitted to the participants’ ker-
nels but were generated from an independent set of stimulus fluctuations,
making the comparison of data and models informative. Similarly, the
RT distributions of the models (Fig. 4C) were generated using simula-
tions with an independent set of morph fluctuations to ensure an accu-
rate comparison of the data and models.

To generate the model predictions, it was necessary to simulate eye
movement data because the models needed to compute the distance
between gaze positions and feature locations to calculate the strength of
momentary evidence (Eq. 10). To generate realistic eye data, we used the
participants’ actual eyemovement data fromrandomly selected trials; how-
ever, when the duration was shorter than the duration required for model
simulations, we extended the eye data in two different ways. For the main
model,we stitched a chunk of the eye trace obtained fromanother trial such
that it could be smoothly connected to the end of the eye data. To do so, we
looked for a chunk that started at a position <0.3° distance from the
endpoint of the eye data. We repeated this stitching procedure until the
eye trace reached the desired length. For the evidence-reset and
independent-accumulatormodels, we simply extended the last eye position
to become the desired length of the eye trace because the model had to
assume that no-saccade occurred during this extended period.

Ideal observer analysis for the guided saccade task
In the guided saccade task (Fig. 5), we examined whether the partici-
pants’ performance could be accounted for by the optimal integration
of the evidence before and after a saccade (Fig. S6). The task had “Pre
only” and “Post only” conditions where a stimulus was only shown
before or after a saccade, and “Both” condition where a stimulus was
shown in both epochs (Fig. 5B). To build an ideal observer model, we
first estimated the precision of the participant’s judgment of the stimulus
in the “Pre only,” “Post only,” and “Both” conditions (M̂pre, M̂post,
and M̂both) assuming Gaussian judgment noise:

M̂pre = M + N(mpre, s
2
pre),

M̂post = M + N(mpost, s
2
post),

M̂both = M + N(mboth, s
2
both),

(13)

where M is the actual stimulus value (morph level), μpre, μpost, and μboth
are biases in the judgment, s2

pre, s
2
post, and s2

both are variances in the

judgment, and N represents the Gaussian distribution. These biases and
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variances could be estimated by fitting a cumulative Gaussian distribu-
tion to the psychometric function of the “Pre only,” “Post only,” and
“Both” conditions, respectively.

An ideal observer model that optimally combines evidence from
“Pre” and “Post” epochs makes the following maximum a posteriori esti-
mate (Ernst and Banks, 2002; Oruç et al., 2003; Ganmor et al., 2015):

M̂ideal = N(mideal, s
2
ideal),

mideal = wpre(M + mpre)+ wpost(M + mpost),

s2
ideal =

1
s2
pre

+ 1
s2
post

( )−1

,

(14)

where:

wpre = 1
s2
pre

1
s2
pre

+ 1
s2
post

( )−1

,

wpost =
1

s2
post

1
s2
pre

+ 1
s2
post

( )−1

.

(15)

The obtained s2
ideal corresponds to the variance of the judgment by the

ideal observer.We compared this value againsts2
both calculated above to

test the optimality of the integration (Fig. S6A, B). We further performed
the same analysis for the no-saccade condition (Fig. S6C, D).

Modeling feature discriminability based on human contrast sensitivity
One potential reason that we did not observe the effects of saccades on
the integration of the to-be-fixated feature (Fig. 5) is that the contrast
sensitivity in the periphery may have been too low to perceive the feature.
To exclude this possibility, we applied an ideal observer model (Peterson
and Eckstein, 2012; Or et al., 2015) based on the spatial variation in
human contrast sensitivity to our stimuli. We assumed that the ideal
observer foveated at one of the two informative features of the images
in each task and tested whether the unfixated feature was still informative
by comparing the model’s psychometric function between the fixated
and unfixated features (Fig. S1C, D).

We first convolved the stimuli in the spatial domain using a previ-
ously reported CSF:

CSF(f , r) = c0f
a0 exp(− b0f − d0r

n0 f ), (16)

where f is the spatial frequency (in cycles per degree) and r is the distance
from the fixation position (in degrees). The constants a0, b0, and c0
describe the peak contrast and the shape of the CSF, d0 and n0 define
how fast the contrast declines with the distance from the fixation.
All the values of these constants were chosen from previous studies
[a0 = 1.2, b0 = 0.3, c0 = 0.625, d0( p2 ) = 0.0001, d0(− p

2 ) = 0.00024,
d0(0) = 0.00005 and n0 = 5; Peterson and Eckstein, 2012; Or et al.,
2015]. For a given fixation point, the input image (the stimuli blended
with a phase-scrambled noise mask used in the experiment) was divided
into small spatial bins without overlap in polar coordinates, and each bin
was assigned a CSF according to the distance r (step size 0.25°) and the
angle (divided into three regions: horizontal 0, up p

2 and down− p
2, which

corresponded to the three d0 parameters above). We then convolved the
whole image with the CSF defined by this spatial bin and extracted the
corresponding area as the filtered result of each bin (Fig. S1C).

Using the filtered images, we performed an ideal observer analysis
and obtained the model performances. The images were compared
with two templates (−100 and 100% morph images in each task) to cal-
culate the likelihoods of choosing one of the two categories:

l f ,k = exp − (g − s f ,k)
T (g − s f ,k)

2s2

( )
, (17)

where g is the filtered input image, the sf,k is the template (−100 or 100%
morph image) filtered in the same way, and σ is a free parameter corre-
sponding to the noise level for decisions. We set the fixation point to be
the center of one of the two features (eye and mouth for the face tasks,
and front and back for the object task) and used the pixels within the
contour of either fixated or unfixated feature (the contours shown in
Fig. S1B). For each morph level, we calculated the likelihoods with
1,000 different phase-scrambled noise masks used in the experiment
and derived the model’s correct rate by averaging them (Fig. S1D). The
noise level, σ, was set such that the model yielded similar performances
with human participants for the fixated feature (expression task: 2.5,
identity and car tasks: 1.5). This choice does not affect our conclusion
as our goal was to compare the relative model performances between
the fixated and unfixated features.

Results
Saccadic sampling of local features during object recognition
We designed an object categorization task in which participants
freelymade eyemovements inside a stimulus to report its category.
We assigned participants to perform either facial identity catego-
rization, facial expression categorization, or car categorization
(Fig. 1A). A stimulus in each trial was sampled from a morph con-
tinuum of two prototype images (e.g., two facial identities in the
identity categorization, which corresponded to −100 and 100%
morph; Fig. 1A and S1A), and the participants were asked to report
which prototype category the stimulus was closer to. Before stimu-
lus onset, participants were required to look at a fixation point
whose position was randomly selected from six possible peripheral
locations (8–11.5° away from the monitor center; Fig. 1B).
Following stimulus onset, the participants had to immediately
make a saccade to the stimulus and could then look at any part
inside it. They subsequently reported their decisions by pressing
a button as soon as they were ready (RT task; Fig. 1B). RTs were
defined as the time between the fixation on the stimulus and the
button press. We recruited nine participants and assigned three
of them to each categorization task (Fig. 1A). These sample num-
bers were determined based on our needs for collecting a large
number of trials (∼3,500 trials per participant) to perform psycho-
physical reverse correlation and model fits (Smith and Little,
2018). Since we had only three participants for each task, the pre-
sent study focused on the behavioral patterns common to all three
tasks. Furthermore, we provided individual participants’ results in
supplementary figures, ensuring that we report the results consis-
tently observed across participants.

To assess how participants sampled the local features during
decision-making, we defined two informative features for each sti-
mulus set (eyes and mouth in the face sets; front and rear parts in
the car set; Fig. 1A) and added random fluctuations to their morph
levels every 106.7ms (eight monitor frames) during stimulus pre-
sentation (Fig. 1B, inset; fluctuation SD, 20% morph). The mean
morph levels of the two features were maintained identical and
constant within each trial. The morph level outside of the two fea-
tures was always set to 0% and remained uninformative. This
design allowed us to use psychophysical reverse correlation
(Ahumada, 1996; Okazawa et al., 2018, 2021) and test how each
feature at each moment during stimulus viewing influenced the
participants’ decisions. Two features were sufficiently separated
for saccades to be made between them (inter-feature distance,
5°), and at the same time, the image sizes were within the range
of naturalistic viewing conditions (McKone, 2009).

We first confirmed that the participants showed stereotypical
choice accuracy and RTs under the three stimulus conditions
(Fig. 1C). Hereafter, we focus on the results qualitatively consis-
tent across the three conditions and present the results either
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individually or averaged across conditions depending on the
purpose of visualization (where averaged results are presented,
individual results are shown in the supplementary figures).
In all conditions, choice accuracy was monotonically modulated
by the morph level [logistic regression slope α1 = 13.7 ± 1.2,
mean ± SEM across participants, Eq. 1; t(8) = 11, p= 4.0 × 10

−6,
two-tailed t-test]. RTs were systematically longer for lower
morph levels [β1 = 7.14 ± 0.52 fitted to a hyperbolic tangent
function, Eq. 2; t(8) = 14, p= 7.5 × 10

−7, two-tailed t-test]. These
patterns are consistent with many previous behavioral results
of perceptual tasks (Shadlen and Kiani, 2013) and thus suggest
that decision-making models similar to those previously pro-
posed, such as bounded evidence accumulation (Okazawa
et al., 2021; Luo et al., 2025), can explain our results.

While performing the task, participants often made multiple
saccades between informative features (Fig. 2). Immediately fol-
lowing stimulus onset, their fixations tended to land just below
the eyes in the face categorization tasks (Fig. 2A, left and mid-
dle), which is consistent with previous studies that investigated
fixation patterns during face recognition (Peterson and
Eckstein, 2012). For expression categorization, landing positions
appeared slightly closer to the nose (Fig. 2A, middle), which
also agrees with previous reports (Peterson and Eckstein,
2012). For car categorization, the participants’ initial fixation
landed on the rear region in most trials. Following this initial
fixation, participants often made multiple saccades (Fig. 2D),
and their fixation positions were dispersed during decision for-
mation. The density of fixation positions during the full stimu-
lus duration revealed a concentration around the two
informative features (Fig. 2B). For identity and car categoriza-
tion, the density plots exhibited two distinct peaks correspond-
ing to the two features. For expression categorization, the two
peaks were less distinct but still covered the two features.
These patterns were qualitatively similar across the participants
(Fig. S2A, B).

The distinct peaks in the density plots resulted from frequent
saccades between the informative features. We plotted the distri-
bution of saccade amplitudes and identified two peaks (Fig. 2E),
one corresponding to small saccades within local features and the
other to larger saccades spanning across features. We were par-
ticularly interested in larger saccades as they lead to large changes
in the retinal image and can contribute to the integration of sen-
sory information across distant features. We therefore extracted
these “cross-feature” saccades and focused our analysis on their
effects on decision-making behavior in the following sections.
In brief, we defined saccades as cross-features if their start and
end points were near the two features and their amplitudes
were greater than two degrees (see Methods for more details).
Examples of the start and end points of these saccades are shown
in Figure 2C. These cross-feature saccades occurred on average
1.02 ± 0.12 times per trial (Fig. 2F) and appeared to be periodic
with an average interval of ∼400ms (Fig. 2G). We did not con-
sider saccades spanning the left and right eyes as cross-features
because the two eyes had the same morph level and did not pro-
vide distinct information in our stimuli. The influence of smaller
saccades on decision-making is shown in Fig. S3A.

As expected from the frequent saccades between the two fea-
tures, we observed that participants relied on both of them to
judge the stimulus categories. We performed psychophysical
reverse correlation (Ahumada, 1996; Okazawa et al., 2018,
2021), in which we averaged the fluctuations of morph levels of
each feature during the participants’ viewing of the feature in
each trial and computed the difference in the average fluctuations
between the trials in which participants chose Category 1 and
Category 2 (Eq. 6 in Methods). The amplitudes of the resulting
psychophysical kernels quantified the extent to which the
fluctuations influenced the participants’ choices (Fig. 2H). The
kernels were positive for both features in all the tasks; even
when we selected the feature weighted less for each participant
and averaged them across the participants (Fig. 2H, right), they

Figure 1. Object categorization task with free saccades. A, Participants were assigned to perform either facial identity, expression, or car categorization (n= 9). In each trial, participants
viewed a stimulus chosen from a morph continuum ranging from −100 to 100% morph levels between two prototype images. Participants were then required to report which prototype the
stimulus was closer to. We defined two informative features (red and blue contour lines) and morphed images inside these two regions. The face images were from the Nim Face set (Tottenham
et al., 2009) and the Tsinghua Facial Expression Database (Yang et al., 2020) and presented with permission. The same face images were used in the subsequent figures. B, Participants began
each trial by fixating on a red dot that appeared at one of six possible locations on the screen. Shortly afterward, a stimulus appeared, and participants were required to make a saccade to the
stimulus. Thereafter, participants could view any part of the image until they reported the stimulus category by pressing one of two buttons as soon as they were ready (reaction time task).
During stimulus viewing, the morph levels of the two informative features fluctuated randomly every 106.7 ms, while their mean was maintained constant within a trial (SD: 20%). This
fluctuation allowed us to examine the weighting of each feature during decision making. An example movie of the dynamic face stimuli can be found in Movie 1. C, Participants showed
stereotypical psychometric and chronometric curves as a function of the mean morph levels. Lines represent logistic and hyperbolic tangent fits for psychometric and chronometric functions,
respectively (Eqs. 1 and 2).
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were still significantly positive [t(8) = 7.1, p= 9.9 × 10−5 for
the feature weighted less; two-tailed paired t-test]. The kernel
amplitudes seemed to differ between the features, such as higher
values for mouth than for eyes in the expression task, but such a
difference in feature weighting may depend on our choice of
prototype stimuli and is not the focus of the current study.
Rather, the key observation was that both features were used to
solve the task, providing a basis for investigating whether and

how eye movements were involved in gathering evidence from
distant features.

Both features fixated before and after saccades contribute to
decisions
Having extracted the cross-feature saccades, we now address one
of our main questions: whether and how the information of local
object features is integrated across these saccades. Many previous

Figure 2. Participants made frequent saccades to sample two informative features. A, Scatter plots of the first fixation positions after stimulus onset show a concentration just below the eyes
in the face tasks and the rear part in the car task. The blue dots represent individual trials from a representative participant. Plots for each participant are shown in Fig. S2A. B, Density plots of the
fixated positions during the entire stimulus viewing period show that the participants primarily fixated around the two informative features. The plots shown are from representative participants;
plots for all the participants can be found in Fig. S2B. C, Example saccades spanning the two informative features. Plots for each participant are shown in Fig. S2C. D, Distribution of saccade counts
per trial. The trials were aggregated across participants. E, The distribution of saccade amplitudes revealed two peaks. The peak with larger amplitudes corresponded to the saccades spanning the
two features (cross-feature saccades; see Methods for its definition). F, Participants made at most two cross-feature saccades in most of the trials. G, Distribution of the timings of cross-feature
saccades. H, Consistent with the frequent fixations on the two features, psychophysical reverse correlation (Eq. 6) revealed positive influences of both features on participants’ decisions. Error bars
indicate SEM across participants.
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studies have demonstrated the trans-saccadic integration of sim-
ple visual stimuli (e.g., grating or color patch) seen at the fovea
and periphery (Ganmor et al., 2015; Herwig et al., 2015;
Wijdenes et al., 2015; Wolf and Schütz, 2015; Paeye et al.,
2017; Shafer-Skelton et al., 2017; Stewart et al., 2020), but object
recognition poses a different challenge because participants see
different features across saccades.

To address this question, we leveraged our stochastic stimuli
and first tested whether the morph fluctuations of the features
fixated on before and after each saccade correlated with partici-
pants’ choices regardless of the features being fixated on. We
averaged the morph fluctuations of the fixated features between
saccades (Fig. 3A) and plotted the participants’ choice perfor-
mance as a function of these morph levels (Fig. 3B, C). In the
trials with one cross-feature saccade, this became a two-
dimensional (2D) psychometric function (Fig. 3B). The plot dis-
played prominent diagonal iso-performance contours, indicating
that both features before and after a saccade influenced the par-
ticipants’ decisions. Fitting a logistic function (Eq. 4) to this pat-
tern revealed significant weights for both pre-saccade [t(8) = 7.2,
p= 9.1 × 10−5, two-tailed t-test across participants] and post-
saccade features [t(8) = 6.3, p= 2.4 × 10

−4, two-tailed t-test] with-
out a strong interaction term [t(8) = 0.62, p= 0.55, two-tailed
t-test]. Likewise, we analyzed the trials with two cross-feature
saccades and confirmed that the morph levels of the features
fixated during the first, second, and third fixation periods all
contributed to the participants’ choices [Fig. 3C; first period:
t(8) = 3.7, p= 0.0063, second period: t(8) = 8.5, p= 2.9 × 10

−5, third
period: t(8) = 4.7, p= 0.0016, interactions: p= 0.082, two-tailed
t-test; Eq. 5]. Thus, the participants relied on information both
before and after saccades to make their decisions. In the next

section, we show that these results indicate the integration of evi-
dence rather than random reliance on features before or after
saccades.

We then used psychophysical reverse correlation to quantify
the temporal dynamics of feature weighting and found a persis-
tent contribution of fixated features across saccades. We com-
puted the psychophysical kernels over time by calculating the
difference in stimulus fluctuations at each time point between
the trials in which the participants chose Category 1 and
Category 2 (Eq. 6). The resulting kernels revealed rich temporal
dynamics (Fig. 3E) and, importantly, had positive weights
throughout the stimulus presentation when the feature was
fixated (Fig. 3E; “pre” and “post” features indicate the features
fixated before and after a saccade, Fig. 3D). When aligned to sti-
mulus onset, the kernels tended to gradually decrease over time.
Around the time of cross-feature saccades, the amplitudes of the
pre- and post-saccade features were swapped. Because the tem-
poral resolution of our stimulus fluctuations was ∼100ms, we
did not analyze further details of temporal dynamics around sac-
cades (cf. Wolf and Schütz, 2015; but see Fig. S3B for kernels plot-
ted with a higher temporal resolution). When aligned to the time
of the participants’ choice, we observed a characteristic peak
around 400–500ms before the choice (Fig. 3E, right). As demon-
strated in the next section, these complex kernel dynamics can be
explained quantitatively using a simple evidence accumulation
model.

Psychophysical reverse correlations could also be used to
quantify the spatial integration of sensory evidence. Instead of
sorting stimulus fluctuations over time, we sorted the same
data according to the visual distance between the participant’s
gaze position and each feature at each time point (Fig. 3F; see

Figure 3. Both features fixated before and after saccades contribute to decisions. A, We extracted the morph levels of the fixated feature (solid lines) at different fixation epochs split by
cross-feature saccades and averaged them in each trial for the analysis in B and C. The panel shows an example trial, in which a participant first fixated on feature 1, made a saccade to feature 2,
and then fixated back on feature 1. B, C, 2D psychometric functions based on the average morph level of each fixation epoch. The lines are diagonal, indicating that both features fixated across
saccades influenced participants’ choices in the trials with one cross-feature saccade (B) and with two cross-feature saccades (C). D, To quantify the temporal weighting of features across
saccades, we performed psychophysical reverse correlation (Eq. 6) using the morph fluctuations of the features fixated before and after cross-feature saccades. The schematic shows an example
of one saccade trials. The trials with more saccades are also included in the analysis (see Methods). E, Psychophysical kernels indicate continuous influences of fixated features on participants’
decisions. Their rich temporal dynamics can be explained by a simple evidence accumulation model (Fig. 4). Shading indicates SEM across participants. F, Schematic for the analysis in G.
To examine spatial integration, we sorted the morph fluctuations based on the distance to each feature from participants’ gaze position. The distance was calculated from a contour line manually
circumscribing each feature (Fig. S1B; see Methods). G, The amplitudes of psychophysical kernels decreased largely monotonically as a function of the distance to the features from the gaze
position.
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Methods for the definition of distance). The resulting kernels
revealed a largely monotonic reduction as a function of distance
(Fig. 3G) with some variability across the stimulus conditions. In
the identity and car tasks, kernel amplitudes decreased sharply
with distance, whereas they were much flatter in the expression
task. Consistent with this finding, another line of analysis
(Fig. S3C, D) confirmed that the influence of unfixated features
was markedly greater on the expression task. Thus, the extent
of the spatial window for integration can be either stimulus- or
task-dependent (see Discussion). Nonetheless, the influence of
the features can still be described as a monotonic function of
the visual distance from the features in all tasks.

Across-saccade evidence accumulation accounts for behavior
Encouraged by our observation of the positive influence of fea-
tures fixated on before and after saccades, we formally tested
the integration of evidence across saccades by fitting an evidence
accumulationmodel to the behavioral data. Previous studies have

shown that face categorization behavior during fixation condi-
tions could be explained using a simple model that computes
the weighted sum of evidence from each facial feature and accu-
mulates this sum over time (Okazawa et al., 2018, 2021). We
extended this model by incorporating participants’ eye move-
ments such that the model kept accumulating evidence across
saccades, but the informativeness of each feature depended on
the gaze position (Tavares et al., 2017).

Our model integrates fluctuating sensory evidence from
object features (e.g., eyes and mouth in face tasks) and accumu-
lates evidence over time across saccades to form a decision vari-
able (Fig. 4A). Each feature has a different strength of evidence
(sensitivity parameter ki in Eq. 10), which decays as a function
of the distance between the feature and the participant’s gaze
position at each time point (decay rate λ in Eq. 10). Decay was
modeled using an exponential function based on previous studies
(Peli et al., 1991; Peterson and Eckstein, 2012), but other mono-
tonic functions could similarly fit the data (Fig. S5B). Aside from

Figure 4. Across-saccade evidence accumulation model explains the behavioral results. A, Our main model accumulates evidence throughout stimulus presentation across saccades until the
accumulated evidence (decision variable) reaches a bound. The choice associated with the crossed bound is made after a non-decision time. Momentary evidence is computed as a linear sum of
the morph levels of the two features with their weights as free parameters (k1 and k2), which are modulated by the distances to the features from the gaze position at each moment (blue inset).
B–D, The model quantitatively accounts for choices, mean reaction times (RTs), RT distributions (the panel includes the trials of all morph levels), and psychophysical kernels. Plots for individual
participants are shown in Fig. S4. E, F, If the weights for the features in the model are fixed regardless of the gaze positions (E), the amplitudes of fixated and unfixated kernels become similar,
deviating from the data (F). ΔBIC indicates the difference in fit performance relative to the main model (positive values indicate poorer fits). G, H, A model that resets evidence accumulation after
saccades (G) fails to account for the amplitudes of data kernels before saccades (H). I, J, Alternatively, if a model accumulates evidence independently for each feature and makes a decision based
on one of the features that reached a bound first (I), it shows deviation of the kernel amplitudes from the data (J).

12 • J. Neurosci., October 29, 2025 • 45(44):e2453242025 Zheng et al. • Saccadic integration for object vision

https://www.jneurosci.org/content/jneuro/suppl/2025/09/15/JNEUROSCI.2453-24.2025.DC1/JN-RM-2453-24-suppl.pdf
https://www.jneurosci.org/content/jneuro/suppl/2025/09/15/JNEUROSCI.2453-24.2025.DC1/JN-RM-2453-24-suppl.pdf
https://www.jneurosci.org/content/jneuro/suppl/2025/09/15/JNEUROSCI.2453-24.2025.DC1/JN-RM-2453-24-suppl.pdf


this decay, we did not assume any component in the model that
depended on eye positions and saccades. When the decision var-
iable reaches an upper or lower bound, the model makes a choice
associated with the bound after a non-decision time that
accounts for sensory and motor delays.

This simple extension of an evidence accumulation model
accounted for all aspects of the behavioral data examined. The
model accurately fitted the choices, mean RTs, and the distribu-
tions of RTs (Fig. 4B, C; R2 = 0.83 ± 0.028). Furthermore, it quan-
titatively accounted for the patterns of psychophysical kernels
aligned to all of the time epochs (Fig. 4D; R2 = 0.51 ± 0.074).
Note that the model kernels were not directly fitted to the partic-
ipants’ kernels but were simulated from an independent set of sti-
mulus fluctuations (see Methods), making the comparison of
data and models informative.

The dynamics of kernels observed in the data can be
accounted for by the mechanistic components of evidence accu-
mulation (Okazawa et al., 2018, 2021). The model explains the
decreasing kernels aligned to stimulus onset because there is a
temporal gap between the bound crossing and the report of a
decision (i.e., the non-decision time), making a later portion of
the stimulus fluctuations irrelevant to the decision. Because the
timing of the bound crossing varies across trials, the model pre-
dicts a gradual reduction in the effect of stimulus fluctuations
over time. The peak of the kernels aligned to the behavioral
responses corresponded to the moment of crossing a decision
bound in the model. At that moment, even tiny stimulus fluctua-
tions bring the decision variable beyond a bound and dictate the
decision, leading to the large kernel amplitudes. Subsequently,
the kernels sharply drop to zero because of the non-decision
time. The small peak for the kernel of the unfixated feature was
observed because the evidence from the unfixated feature was
also accumulated (weighted by the exponential decay function)
and contributed to crossing the bound. When aligned to the
time of saccades, the amplitudes of the kernels swapped between
the pre- and post-saccade features because of the change in sen-
sory sensitivity caused by the distance between the features and
the gaze location.

Note that the peak of the response-aligned kernels indicates
that the non-decision time was ∼400ms, substantially longer
than the expected minimum necessary time for sensory and
motor processing (Bompas et al., 2024). In our model formalism,
any time that did not depend on stimulus morph levels was
explained as non-decision time (see T0 in Methods), thus it could
include the time needed to process complex object information
and map object categories to the associated action plans.

We further confirmed that no other model accounted for
the behavioral data without assuming gaze-dependent evidence
accumulation. First, we tested a model that did not consider
gaze position but accumulated evidence from two informative fea-
tures with constant sensory sensitivity over time (Fig. 4E). This
gaze-independent model could fit choices and RTs (Fig. S5C) but
clearly failed to explain the differences in the amplitudes of psycho-
physical kernels between fixated and unfixated features (Fig. 4F).
The model kernels showed slight differences between fixated and
unfixated features because participants tended to fixate on features
with higher sensitivitymore frequently, but the differences were far
smaller than those observed in the actual data.

Second, we considered a model that did not integrate evidence
across saccades but restarted evidence accumulation after each
saccade (Fig. 4G). According to this evidence-reset model, if par-
ticipants cannot make a decision based on one feature, they
switch their focus to the other feature and make a decision based

on it. This model could also fit choices and RTs (Fig. S5D), but, as
expected, failed to explain the amplitude of psychophysical ker-
nels before saccades (Fig. 4H). The model kernels before saccades
were positive owing to the inclusion of trials without saccades,
but they were much smaller than the data.

Finally, we ruled out a hypothesis that participants relied on
either of the two features to render a decision but did not inte-
grate the evidence from both features across saccades (indepen-
dent accumulator model; Fig. 4I). This model had two
accumulators, one for each feature, which accumulated evidence
only when the feature was fixated and was frozen when it was not
fixated. A decision was made when either accumulator reached a
bound. This model could fit choices and average RTs well
(Fig. S5E) and also generated psychophysical kernels that resem-
bled the data overall (Fig. 4J). However, the kernel amplitude for
the unfixated feature was near zero, since the evidence from
the two features was not integrated. The response-aligned kernel
for the unfixated feature was weakly positive because the last sac-
cade could have occurred shortly before the response. By con-
trast, the kernel amplitude for the fixated feature was higher
than the amplitude of the data throughout the trials because a
decision had to be based solely on the fixated feature, requiring
greater sensitivity to it. Model comparison revealed that our
main model provided a better fit to the data (ΔBIC = 346.6).

Overall, we found that a simple mechanism that accumulates
sensory evidence across saccades is sufficient to account for the
participants’ object categorization behavior. Eye position infor-
mation was required in the model to explain the decrease in sen-
sitivity to features as a function of visual eccentricity; however,
aside from that, we did not need to model the complex interac-
tions between eye movements and the object recognition process.
While these results cannot prove the absence of such interac-
tions, our results in the next section also support the idea that
the interactions of the visual and oculomotor systems do not
play a substantial role in the types of object recognition behavior
we examined.

Active saccade commands are unnecessary for feature
integration
The observed integration of evidence across saccades could have
depended on neural processes that combine visual signals and
active saccade commands (i.e., efference copy), such as the pre-
dictive coding of visual features prior to saccades. To examine
the extent of the contribution of efference copy, we next designed
a “guided saccade” task that could compare object recognition
performances between conditions with and without saccades
(Fig. 5A). This task used the same object stimuli as in the free sac-
cade task, but we strictly controlled the participants’ eye move-
ment and stimulus presentation. In the saccade condition,
participants were explicitly instructed to make cross-feature sac-
cades during object categorization (Fig. 5B). In the no-saccade
condition, participants maintained fixation while there was a
sudden change in the visual display, mimicking the change
caused by saccades (Fig. 5E).

The saccade and no-saccade conditions had almost identical
trial structures and stimulus durations. In each trial, a fixation
point was initially placed at the center of one of the informative
features of the stimulus. In the saccade condition, the fixation
point moved to the location of the other informative feature
immediately following the stimulus onset (Fig. 5B). The partici-
pants were required to make a saccade following this jump of the
fixation point. The saccade was followed by another stimulus
period (∼200ms), and the participants reported their decisions
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by pressing a button after the stimulus was extinguished. In the
no-saccade condition, the stimulus position suddenly shifted
from one region to another, while the fixation point stayed the
same, and the participants had to maintain fixation (Fig. 5E).
The duration of the first stimulus and the blank between the
two displays were set according to each participant’s saccade
latency (170.0 ms ± 5.3 ms) and duration (53.5 ms ± 1.3 ms) in
the saccade condition; thus both the spatial and temporal profiles
of stimuli were approximately matched between the two condi-
tions. Each of the two conditions had trials where a stimulus
was shown both before and after a saccade/stimulus jump
(“Both” trials; Fig. 5B, E, left) and trials where a stimulus was
shown only before or after (“Pre only” and “Post only” trials;
Fig. 5B, E, right).

In the saccade condition, we confirmed that participants inte-
grated evidence across a saccade. Their behavioral accuracy was
significantly higher when an image was present across a saccade
(“Both” trials) than when it was present only before or after a
saccade [Fig. 5C; the difference in logistic slope α2 = 1.69 ± 0.36,
Eq. 3; t(8) = 4.75, p= 0.0014, two-tailed t-test]. The improvement
in performance was subtle but consistent with the near-optimal
integration of evidence (Fig. S6), in line with prior studies that
examined the saccadic integration of simpler features (Ganmor
et al., 2015). Similar to the free saccade task, we also identified
positive kernels for the fixated feature both before and after a
saccade [Fig. 5D; before saccade t(8) = 6.41, p= 2.1 × 10

−4, after
saccade t(8) = 10.8, p= 4.8 × 10

−6, two-tailed t-test].
Critically, higher performance for the “Both” trials was also

observed in the no-saccade condition, supporting evidence inte-
gration [Fig. 5F; the difference in logistic slope α2 = 2.01 ± 0.39,
Eq. 3; t(8) = 5.12, p= 9.1 × 10

−4, two-tailed t-test]. In support of
this, we also identified the positive kernels for the fixated features
both before and after a saccade in the no-saccade condition
[Fig. 5G; before saccade t(8) = 9.69, p= 1.1 × 10

−5, after saccade
t(8) = 7.97, p= 4.5 × 10−5, two-tailed t-test]. The size of the

performance improvement was statistically indistinguishable
from the saccade condition [α2 = 0.32 ± 0.50, Eq. 3; t(8) =−0.64,
p= 0.54, two-tailed t-test]. One potential difference we noted
was that the kernel for the unfixated feature before a saccade
looked slightly higher in the saccade condition than in the
no-saccade condition, which may indicate pre-saccadic enhance-
ment in visual sensitivity (Li et al., 2021), but this difference was
also statistically indistinguishable [Fig. 5D, G; t(8) =−1.71, p=
0.13, two-tailed t-test]. Thus, the results indicate that saccade
commands are not a prerequisite for feature integration and do
not substantially improve behavioral performance even if they
are effective (see Discussion for the interpretation).

Saccade frequency was minimally influenced by ongoing
decision formation
Thus far, we have focused on the mechanisms of perceptual
decision-making during object recognition, but our free saccade
task (Fig. 1) also allowed us to examine whether and how saccade
patterns are modulated by the ongoing decision-making process.
For example, when the currently fixated feature is uninformative,
people may make frequent saccades for the other feature to seek
for more evidence (Li et al., 2023), or people may spend more
time fixating on each feature (Horstmann et al., 2017;
Einhäuser et al., 2020). If so, there could be a correlation between
stimulus difficulty and saccadic frequency.

Contrary to these expectations, we did not find any significant
relationship between stimulus difficulty and saccade frequency in
our tasks. The average number of cross-feature and other sac-
cades in each trial was clearly higher in more difficult trials
(Fig. 6A), but this did not indicate more frequent saccades
because the trial duration (i.e., RT) was longer in difficult trials
(Fig. 1C, bottom). Therefore, the number of saccades per time
had to be estimated, but the calculation requires greater complex-
ity than a simple division of the number of saccades by the trial
duration, as saccades tend to be periodic (Fig. 2G), and the

Figure 5. Guided saccade task revealed the lack of influence of efference copy on feature integration. A, In this task, participants were asked to look at the red fixation dot, which moved from
the position of one feature to the other in the saccade condition (B). After the saccade, the stimulus was extinguished in∼200 ms, and participants reported their choice by pressing a button. As
in the free saccade task, morph levels fluctuated every∼100 ms (inset). Each participant was assigned to perform either identity, expression, or car categorization (n= 9). B, E, We compared the
saccade condition (B) with the non-saccade condition (E), in which the fixation point stayed at the same position, but the stimulus jumped, mimicking the visual display in the saccade condition.
The stimulus duration was matched between the conditions within each participant (see Methods). To quantify the integration of evidence across saccades, we also had trials in which a stimulus
was shown only before (“Pre only”) or after (“Post only”) the saccade or stimulus jump event. C, F, Whether or not participants made a saccade, their performance improved when a stimulus was
shown in both epochs. Error bars denoting SEM across participants were smaller than the data points. D, G, Psychophysical kernels in the “both” condition showed positive influences of the
fixated features before and after a saccade or stimulus jump, consistent with evidence integration. The data of individual participants are shown in Fig. S6.
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calculation strongly depends on the relative distributions of RTs
and saccade timing. Therefore, we matched the RT histograms of
different stimulus strengths by randomly subsampling trials.
After the RT matching, saccade frequency was not correlated
with stimulus difficulty [Fig. 6B; cross-feature saccades: F(5,48) =
0.08, p= 0.995; all saccades: F(5,48) = 0.1, p= 0.992, repeated-
measures one-way ANOVA].

We further corroborated this conclusion through an analysis
that does not rely on matching RTs (Fig. 6C). This was important
as RTs could be highly correlated with participants’ subjective
uncertainty (Kiani et al., 2014) and thus matching RTs could
also align subjective uncertainty across stimulus strengths.
Instead, we calculated the probability of making a saccade at
each time point using only trials with RTs longer than the time
point. As long as there were a sufficient number of trials at
each time point, this probability should not be biased by the
duration of the RTs following each time point. We plotted this
probability using either all cross-feature saccades, the first cross-
feature saccade in a trial, or the second saccade in a trial, and did
not find differences between easy and difficult trials (Fig. 6C, top;
split by 20%morph boundary; p= 0.747, repeated-measures two-
way ANOVA). Including within-feature saccades did not affect
this result (Fig. 6C bottom; p= 0.507, repeated-measures two-
way ANOVA). In summary, saccades appeared to occur in a sto-
chastic manner without clear influence from the ongoing
decision-making process in our tasks.

Discussion
Humans often make saccades to sample local informative fea-
tures when viewing object images, but the mechanisms by which
saccades contribute to object recognition have yet to be estab-
lished. Studies on eye movements have proposed complex inter-
actions between the visual and oculomotor systems, such as
predictive visual processing based on saccadic commands
(Binda and Morrone, 2018), whereas studies on object

recognition lean toward eschewing this complexity and favor a
briefly flashed static image under fixation conditions (DiCarlo
et al., 2012). Here, we applied a decision-making theory to refor-
mulate the problem as the accumulation of sensory evidence
from multiple local features across saccades. Our results indicate
a parsimonious relationship between eye movements and object
recognition; humans integrated evidence across saccades (Figs. 3
and 4), but behavioral performance did not strongly depend on
active saccade signals (Fig. 5). As such, a simple evidence accu-
mulation model that does not assume complex interactions
between the visual and oculomotor systems can approximate
decision-making behaviors.

Many prior studies have documented the integration of visual
information across saccades (Ganmor et al., 2015; Herwig et al.,
2015; Wijdenes et al., 2015; Wolf and Schütz, 2015; Paeye et al.,
2017; Shafer-Skelton et al., 2017; Stewart et al., 2020), but to our
knowledge, ours is the first attempt to apply a mechanistic model
grounded on evidence accumulation to account for object recog-
nition involving saccades. The accumulation of evidence is com-
mon in many perceptual tasks (Shadlen and Kiani, 2013), and
existing models of form and object vision suggest that informa-
tion is integrated across saccades (Renninger et al., 2004, 2007;
Akbas and Eckstein, 2017). Thus, one might argue that our
results were largely expected. However, we believe that we have
provided important empirical tests for the following three points.
First, we were able to demonstrate the integration of evidence
across saccades using naturalistic stimuli (faces and objects)
through a model fitting approach that quantitatively explains
various aspects of the participants’ choice behavior. Second,
this modeling approach allowed us to test the integration process
during a free viewing condition in which participants’ gaze loca-
tions and times were unrestricted. Finally, we demonstrated a
limited role for efference copy in this process, confirming that
a simple evidence accumulation model (Fig. 4) is sufficient to
explain behavior in our tasks.

Figure 6. The frequency of saccades did not significantly depend on stimulus difficulty. A, The average number of saccades per trial was higher for more difficult (low morph level) trials. Error
bars indicate the SEM across participants. But reaction times were also longer for these trials (Fig. 1C). B, When saccade frequency per time was calculated, it was not correlated with stimulus
difficulty. To allow the unbiased estimation of saccade frequency, we matched RT distributions across stimulus strength when calculating the frequency (see main text and Methods). C, Without
matching RT distributions, we compared the probability of making a saccade at each time point by dividing the count of trials with a saccade at that time point by the count of trials whose RTs
were longer than that time. We compared this probability between easy and difficult trials and found that they were statistically indistinguishable.
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The apparent lack of necessity for efference copy (Fig. 5)
seemingly contradicts a large body of existing studies underscor-
ing its role in visual perception (Ross et al., 2001; Melcher, 2005,
2007; Binda and Morrone, 2018), but this could stem from the
fact that the demands for our tasks were different. In conven-
tional trans-saccadic perceptual tasks, participants are required
to judge a simple stimulus (e.g., the orientation of a Gabor patch)
initially viewed in the periphery and subsequently foveated
through a saccade (Ganmor et al., 2015; Herwig et al., 2015;
Wijdenes et al., 2015; Wolf and Schütz, 2015). Here, the remap-
ping of receptive fields induced by oculomotor commands
(Binda and Morrone, 2018) could serve as a vehicle to fuse infor-
mation across saccades (Melcher, 2005, 2007), although the
necessity of an efference copy is still debated even under this con-
dition (Henderson and Anes, 1994; Bays and Husain, 2007). In
contrast, object images comprise multiple distinct features. We
believe that the integration of foveated features across saccades
is more important for improving behavioral accuracy in this
case, which may not require oculomotor information. It is also
possible that our behavioral data did not have sufficient statistical
power to detect the effects of oculomotor signals on feature inte-
gration, but even if there is an effect, its effect size must be limited
according to our results.

Regarding the frequency of saccades, we found minimal influ-
ence of uncertainty in ongoing decision making (Fig. 6). Previous
studies have found that the timing of saccades is modulated by
internal states of visual recognition (Henderson and Pierce,
2008; Castelhano et al., 2009; Nuthmann et al., 2010; Laubrock
et al., 2013; Trukenbrod and Engbert, 2014; Nuthmann, 2017;
Einhäuser et al., 2020). We did not observe such effects in our
tasks, possibly because our participants were extensively trained
to perform saccadic sampling on the same visual images and had
established stereotyped saccadic patterns based on the learned
statistics of the stimuli. Also, the average stimulus strength was
always matched between two informative features in our tasks,
potentially providing less incentive for participants to modulate
their saccade patterns depending on decision uncertainty.
Nevertheless, the lack of effects suggests that evidence accumula-
tion during decision making and eye movement planning can be
independent. To explain periodic saccades, some previous theo-
ries have considered the drift-diffusion process that triggers a
saccade when it reaches a threshold, effectively functioning like
a stochastic clock counter (Nuthmann et al., 2010; Trukenbrod
and Engbert, 2014; Mengers et al., 2024), but it is likely that
such a process and the evidence accumulation we modeled
here are separate processes in the brain.

The spatial distribution of saccades we observed were consis-
tent with previous studies (Fig. 2). Participants tended to look at
informative regions or nearby areas in all tasks (Fig. 2B) and
made frequent saccades across features (Fig. 2C). A seminal study
by Peterson and Eckstein (2012) showed that people look just
below the eyes during face recognition, which is consistent
with the prediction of an ideal observer model. Our observations
of the initial fixation positions replicated these findings (Fig. 2A),
whereas fixations diverged to other locations during prolonged
viewing, which is also consistent with their results (Or et al.,
2015). A tantalizing question is whether this behavior is optimal
in terms of information sampling (Najemnik and Geisler, 2005;
Vandormael et al., 2017; Callaway et al., 2021), but defining opti-
mality in our tasks is not trivial. An ideal observer model that
learned the statistical regularity of our stimuli may just continue
to fixate on the most informative part of an image throughout sti-
mulus viewing, but sampling multiple informative features might

also become optimal depending on its definition (Renninger
et al., 2004, 2007; Hoppe and Rothkopf, 2019).

It would also be worthwhile to discuss how our findings extend
to other natural object stimuli.Wedesignedour stimuli to have two
distant informative features to manipulate informativeness and
detect the participants’ saccades across the features. Although we
designed our stimuli to be naturalistic—eyes andmouth are indeed
informative features for face recognition (Schyns et al., 2002;
Okazawa et al., 2021)—other object images would have more
than two diagnostic features that could also overlap with each
other. In such cases, people may not directly look at each feature
but rather look at a place between the features to sample evidence.
Indeed, in the expression task, the participants tended to fixate
between the eyes and mouth (Fig. 2B) and had a broader spatial
window (Fig. 3G) sampling evidence from both fixated and
unfixated features (Fig. S3C–E). Thismight indicate that the partic-
ipants adjusted their spatial sampling windows depending on the
task context. Stimulus sizewould also influence sampling strategies
(vonWartburg et al., 2007; Otero-Millan et al., 2013). In our exper-
iments, we used a naturalistic range of object sizes (McKone, 2009),
but if the viewing distance increases, the image would become too
small to make saccades inside, in which case features could be spa-
tially integrated without saccades (Okazawa et al., 2021). Finally,
we covered our stimuli with dynamic noise, which could have
made it difficult to glean evidence from the unfixated feature before
saccades. Had we removed the noise, the participants’ spatial accu-
mulation window might have been broader than observed
(Fig. 3G). Although we were unable to test all possible conditions,
our model—evidence accumulation that depends only on the
eccentricity of features—can readily offer quantitative predictions
of object recognition behaviors in any of these settings.

We hope that the simplicity of the proposed framework
encourages further investigation of object recognition under nat-
uralistic viewing. Our findings suggest that, despite the apparent
complexity of oculomotor events, there could be stable represen-
tations of momentary and accumulated sensory evidence across
saccades in the neural circuitry for object processing (Bonnen et
al., 2023; Xiao et al., 2024) and decision-making (So and Shadlen,
2022). Such a solution for active object vision can also be easily
implemented in image-computable models, since it only requires
accumulating evidence from the model responses to each snap-
shot of image sequences.

Data and Code Availability
Data and code used in this study are available at https://osf.io/
ckap7/.
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