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Visual object recognition relies on elaborate sensory processes that transform retinal inputs to object representations, but it
also requires decision-making processes that read out object representations and function over prolonged time scales. The
computational properties of these decision-making processes remain underexplored for object recognition. Here, we study
these computations by developing a stochastic multifeature face categorization task. Using quantitative models and tight con-
trol of spatiotemporal visual information, we demonstrate that human subjects (five males, eight females) categorize faces
through an integration process that first linearly adds the evidence conferred by task-relevant features over space to create
aggregated momentary evidence and then linearly integrates it over time with minimum information loss. Discrimination of
stimuli along different category boundaries (e.g., identity or expression of a face) is implemented by adjusting feature weights
of spatial integration. This linear but flexible integration process over space and time bridges past studies on simple percep-
tual decisions to complex object recognition behavior.
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Significance Statement

Although simple perceptual decision-making such as discrimination of random dot motion has been successfully explained as
accumulation of sensory evidence, we lack rigorous experimental paradigms to study the mechanisms underlying complex
perceptual decision-making such as discrimination of naturalistic faces. We develop a stochastic multifeature face categoriza-
tion task as a systematic approach to quantify the properties and potential limitations of the decision-making processes dur-
ing object recognition. We show that human face categorization could be modeled as a linear integration of sensory evidence
over space and time. Our framework to study object recognition as a spatiotemporal integration process is broadly applicable
to other object categories and bridges past studies of object recognition and perceptual decision-making.

Introduction
Accurate and fast discrimination of visual objects is essential to
guide our behavior in complex and dynamic environments.
Previous studies largely focused on the elaborate sensory mecha-
nisms that transform visual inputs to object-selective neural
responses in the inferior temporal cortex of the primate brain
through a set of representational changes along the ventral visual

pathway (Riesenhuber and Poggio, 1999; DiCarlo and Cox, 2007;
Freiwald and Tsao, 2010; Yamins et al., 2014). However, goal-
directed behavior also requires decision-making processes that
can flexibly read out sensory representations and guide actions
based on them as well as information about the environment, be-
havioral goals, and expected costs and gains. Such processes have
been extensively examined using simplified sensory stimuli that
vary along a single dimension, for example, the direction of
moving dots changing from left to right (Palmer et al., 2005).
For those stimuli, subjects’ behavior could be successfully
accounted for by flexible mechanisms that accumulate sen-
sory evidence and combine it with task-relevant information
(Ratcliff and Rouder, 1998; Gold and Shadlen, 2007).
However, more complex visual decisions based on stimuli
defined by multiple features, such as object images, remain
underexplored, although the need for such tests is gaining
significance, and important steps are being taken in this
direction (Heekeren et al., 2004; Philiastides and Sajda, 2006;
Philiastides et al., 2014; Zhan et al., 2019).
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Here, we apply the quantitative approach developed for
studying simple perceptual decisions to investigate face recogni-
tion. We focus on face recognition because it is by far the most
extensively studied among the subdomains of object vision
(Kanwisher and Yovel, 2006; Tsao and Livingstone, 2008;
Barraclough and Perrett, 2011; Rossion, 2014; Perrodin et al.,
2015). Face stimuli are also convenient to use because they allow
quantitative manipulation of sensory information pivotal for
mechanistic characterization of the decision-making process
(Waskom et al., 2019); images can be decomposed into local spa-
tial parts (e.g., eyes, nose, mouth) and can be morphed between
two instances (e.g., faces of two individuals) to create a paramet-
ric stimulus set. At the same time, human face perception is
highly elaborate and embodies the central challenge of object rec-
ognition that must distinguish different identities from complex
visual appearances (Tsao and Livingstone, 2008).

To quantitatively characterize the decision-making process,
we investigate face recognition as a process of combining sensory
evidence over both space and time. Faces are thought to be
processed holistically (Maurer et al., 2002; Richler et al.,
2012); breaking the configuration of facial images signifi-
cantly affects face perception, indicating spatial interactions
across facial parts. However, computational properties of the
spatial integration remain elusive (Richler et al., 2012). One
may consider that holistic recognition arises from nonlinear
integration of facial features (Shen and Palmeri, 2015), but
linear integration may also suffice to account for holistic
effects (Gold et al., 2012). Furthermore, humans flexibly use
different facial parts to categorize faces according to their be-
havioral needs (e.g., discrimination of identity vs expression;
Schyns et al., 2002, 2007), but the underlying mechanisms of
this flexibility also remain underexplored.

In addition to spatial properties, face and object recognition
also include rich temporal dynamics. Although object identi-
fication and categorization are usually fast, reaction times
(RTs) are often hundreds of milliseconds longer (Gauthier et
al., 1998; Kampf et al., 2002; Ramon et al., 2011; Carlson et
al., 2014; Witthoft et al., 2018) than the time required for a
feedforward sweep along the ventral visual pathway (Thorpe
et al., 1996; Hung et al., 2005). Furthermore, recognition per-
formance follows a speed-accuracy trade-off, where addi-
tional time improves accuracy (Thorpe et al., 1996; Gauthier
et al., 1997). Together, these observations suggest that the de-
cision-making process in face and object recognition is not
instantaneous but unfolds over time (Heitz and Schall, 2012;
Hanks et al., 2014). However, the computational properties
have scarcely been characterized.

Using our novel face categorization tasks that tightly control
spatiotemporal sensory information (Okazawa et al., 2018,
2021), we show that human subjects categorize faces by linearly
integrating visual information over space and time. Spatial fea-
tures are weighted nonuniformly and integrated largely linearly
to form momentary evidence, which is then accumulated over
time to generate a decision variable that guides the behavior. The
temporal accumulation is also linear, and the time constant is
quite long, preventing significant loss of information (or leak)
during the decision-making process. Between identity and
expression categorizations, the weighting for spatial integration
flexibly changes to accommodate task demands. Together, we
offer a novel framework to study face recognition as a spatiotem-
poral integration process, which unifies two rich veins of visual
research, namely, object recognition and perceptual decision-
making.

Materials and Methods
Observers and experimental setup
Thirteen human observers (18–35 years of age, five males and eight
females recruited from students and staff at New York University)
participated in the experiments. Observers had normal or corrected-
to-normal vision. They were naive to the purpose of the experiment,
except for one observer who is an author (G.O.). They all provided
informed written consent before participation. All experimental pro-
cedures were approved by the Institutional Review Board at New
York University.

Throughout the experiment, subjects were seated in an adjustable
chair in a semidark room with chin and forehead supported before a
CRT display monitor (21-inch Sony GDM-5402; 75Hz refresh rate;
1600 � 1200 pixels screen resolution; 52 cm viewing distance). Stimulus
presentation was controlled with the Psychophysics Toolbox (Brainard,
1997) and MATLAB (MathWorks). Eye movements were monitored
using a high-speed infrared camera (EyeLink, SR Research). Gaze posi-
tion was recorded at 1 kHz.

Experimental design
Stochastic multifeature face categorization task. The task required

the classification of faces into two categories, each defined by a prototype
face (Fig. 1A,B). The subject initiated each trial by fixating a small red
point at the center of the screen [fixation point (FP), 0.3° diameter]. After
a short delay (200–500ms, truncated exponential distribution), two targets
appeared 5° above and below the FP to indicate the two possible face cate-
gory choices (category 1 or 2). Simultaneously with the target onset, a face
stimulus (2.18°� 2.83°,;83� 108 pixels) appeared on the screen parafo-
veally (stimulus center 1.8° to the left or right of the FP, counterbalanced
across subjects; results were similar for the two sides). We placed the stim-
uli parafoveally, aiming to present the informative facial features at com-
parable visual eccentricities and yet keep the stimuli close enough to the
fovea to take advantage of the foveal bias for face perception (Levy et al.,
2001; Kreichman et al., 2020). The parafoveal presentation also enabled us
to control subjects’ fixation so that small eye movements (e.g., microsac-
cades) within the acceptable fixation window did not substantially change
the sensory inputs. Subjects reported the face category by making a sac-
cade to one of the two targets as soon as they were ready. The stimulus
was extinguished immediately after the saccade initiation. Reaction times
were calculated as the time from the stimulus onset to the saccade initia-
tion. If subjects failed to make a choice in 5 s, the trial was aborted
(0.101% of trials). To manipulate task difficulty, we created a morph con-
tinuum between the two prototypes and presented intermediate morphed
faces on different trials (see below). Distinct auditory feedbacks were deliv-
ered for correct and error choices. When the face was ambiguous (halfway
between the two prototypes on the morph continuum), correct feedback
was delivered on a random half of trials.

Subjects could perform two categorization tasks, identity categoriza-
tion (Fig. 1B, top) and expression categorization (Fig. 1B, bottom). The
prototype faces for each task were chosen from the photographs of
MacBrain Face Stimulus Set (Tottenham et al., 2009). For the illustra-
tions of identity stimuli in Figure 1, A, B, and C, we used morphed
images of two authors’ faces to avoid copyright issues. We developed a
custom algorithm that morphed different facial features (regions of the
stimulus) independently between the two prototype faces. Our algorithm
started with 97–103 manually matched anchor points on the prototypes
and morphed one face into another by linear interpolation of the posi-
tions of anchor points and textures inside the tessellated triangles
defined by the anchor points. The result was a perceptually seamless
transformation of the geometry and internal features from one face to
another. Our method enabled us to morph different regions of the faces
independently. We focused on three key regions (eyes, nose, and mouth)
and created an independent series of morphs for each one of them. The
faces that were used in the task were composed of different morph levels
of these three informative features. Anything outside those features was
set to the halfway morph between the prototypes and thus was uninfor-
mative. The informativeness of the three features (stimulus strength)
was defined based on the mixture of prototypes, spanning from –100%
when the feature was identical to prototype 1 to 1100% when it was
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identical to prototype 2 (Fig. 1C). At the middle of the morph line (0%
morph), the feature was equally shaped by the two prototypes.

By varying the three features independently, we could study spatial
integration through creating ambiguous stimuli in which different fea-
tures could support different choices (Fig. 1C). We could also study
temporal integration of features by varying the three discriminating fea-
tures every 106.7ms within each trial (Fig. 1D). This frame duration pro-
vide us with sufficiently precise measurements of subjects’ temporal
integration in their ;1 s decision times while ensuring the smooth

subliminal transition of frames (see below). The stimulus strengths of
three features in each trial were drawn randomly from independent
Gaussian distributions. The mean and SD of these distributions were
equal and fixed within each trial, but the means varied randomly from
trial to trial. For the identity task, we tested the following seven mean
stimulus strengths: –50%, –30%, –14%, 0%, 114%, 130%, and 150%.
For the expression task, we used –50%, –20%, –10%, 0%, 110%, 120%,
and150%, except for subject 13, who had a higher behavioral threshold
and was also exposed to 680% morph levels. The SD was 20%

Figure 1. Stochastic multifeature face categorization task. A, On each trial, after the subject fixated on a central fixation point, two circular targets appeared on the screen and were immedi-
ately followed by a dynamic stimulus stream consisting of faces interleaved with masks (Movie 1). The subject was instructed to report the stimulus category (face identity or expression in dif-
ferent blocks) as soon as ready by making a saccadic eye movement to one of the two targets associated with the two categories. Reaction time was defined as the interval between the
stimulus onset and the saccade onset. B, The stimuli in each task were engineered by morphing two category prototype stimuli, defined as 6100% stimulus strengths. The prototype faces
were chosen from the photographs of MacBrain Face Stimulus Set (Tottenham et al., 2009). Our custom algorithm allowed independent morphing of different stimulus regions. We defined
three regions (eyes, nose, and mouth) as informative features while fixing other regions to the intermediate level between the prototypes. The top row for each task shows a morph continuum
where all facial features vary together between the two prototypes. The bottom three rows show the morph continua for individual informative features while keeping the other features at
the intermediate level between the prototypes (0% morph level). For the identity stimuli shown in the figure, we used faces of two authors (G.O. and R.K.) to avoid copyright issues. C,
Because we independently morphed the three facial features, the stimulus space for each task was three dimensional. In this space, the prototypes (P1 and P2) are two opposite corners. In
each trial, the nominal mean stimulus strength was sampled from points on the diagonal line (filled black dots). Each stimulus frame was then sampled from a 3D symmetric
Gaussian distribution around the specified nominal mean (gray clouds; SD 20% morph). D, During the stimulus presentation in each trial, the morph levels of the three informative
features were randomly and independently sampled from the Gaussian distribution every 106.7 ms. The features therefore furnished differential and time-varying degrees of support
for the competing choices in each trial. Each face in the stimulus stream was masked with a random noise pattern created by phase scrambling images of faces (A). The masking pre-
vented subjects from detecting the feature changes, although these changes still influenced the subjects’ final choices. The stimuli were presented parafoveally to keep the informa-
tive features at more or less similar eccentricities in the visual field.

7878 • J. Neurosci., September 15, 2021 • 41(37):7876–7893 Okazawa et al. · Decision-Making Mechanism for Face Categorization

https://doi.org/10.1523/JNEUROSCI.3055-20.2021.video.1


morph level. Sampled values that fell outside the range of –100% to
1100% (0.18% of samples) were replaced with new samples inside
the range. Using larger SDs would have allowed us to sample a wider
stimulus space, but we limited the SD to 20% morph level to keep the stim-
ulus fluctuations subliminal, avoiding potential changes of decision strategy
for vividly varying stimuli.

Changes in the stimulus within a trial were implemented in a sublim-
inal fashion so that subjects did not consciously perceive variation of fa-
cial features, and yet their choices were influenced by these variations.
We achieved this goal using a sequence of stimuli and masks within each
trial (Movie 1). The stimuli were morphed faces with a particular combi-
nation of the three discriminating features. The masks were created by
phase randomization (Heekeren et al., 2004) of the 0% morph face and
therefore had largely matching spatial frequency content with the stimuli
shown in the trial. The masks ensured that subjects did not consciously
perceive minor changes in informative features over time within a trial.
In debriefings following each experiment, subjects noted that they saw
one face in each trial, but the face was covered with time-varying cloudy
patterns (i.e., masks) over time.

For the majority of subjects (9 of 13), each stimulus was shown with-
out a mask for one monitor frame (13.3ms). Then, it gradually faded
out over the next seven frames as a mask stimulus faded in. For these
frames, the mask and the stimulus were linearly combined, pixel by
pixel, according to a half-cosine weighting function, so that in the last
frame, the weight of the mask was 1 and the weight of the stimulus was
0. Immediately afterward, a new stimulus frame with a new combination
of informative features was shown, followed by another cycle of mask-
ing, and so on. For a minority of subjects (4 of 13), we replaced the half-
cosine function for the transition of stimulus and mask with a full-cosine
function, where each eight-frame cycle started with a mask, transitioned
to an unmasked stimulus in frame 5, and transitioned back to a full
mask by the beginning of the next cycle. We did not observe any noticea-
ble difference in the results of the two presentation methods and com-
bined data across subjects.

Twelve subjects participated in the identity categorization task
(35,300 total trials; mean 6 SD trials per subject, 2942 6 252). Seven
subjects participated in the expression categorization task in separate
sessions (20,225 total trials; trials per subject, 2889 6 285). Six of the
subjects performed both tasks. Our subject counts are comparable to
previous studies of perceptual decision-making tasks (Levi et al., 2018;
Stine et al., 2020). Collecting a large number of trials from individual
subjects enabled detailed quantification of decision behavior for each
subject (Smith and Little, 2018). Our results were highly consistent
across subjects. A part of the data for the identity categorization task was
previously published (Okazawa et al., 2018).

Odd-one-out discrimination task. Our behavioral analyses and deci-
sion-making models establish that subjects’ choices in the identity and
expression categorization tasks were differentially informed by the three
facial features; choices were most sensitive to changes in the morph level

of eyes for identity discrimination and changes in the morph level of
mouth for expression discrimination (Fig. 2E,F). This task-dependent sen-
sitivity to features could arise from two sources: different visual discrimina-
bility for the same features in the two tasks and/or unequal decision
weights for informative features in the two tasks (see Fig. 10A). To deter-
mine the relative contributions of these factors, we designed an odd-one-
out discrimination task to measure visual discriminability of different
morph levels of informative features in the two tasks (see Fig. 10B).

On each trial, subjects viewed three stimuli presented sequentially at
1.8° eccentricity (similar to the categorization tasks). The stimuli
appeared after the subject fixated a central FP, shown for 320ms each,
with 500ms interstimulus intervals. The three stimuli in a trial were the
same facial feature (eyes, nose, or mouth) but had distinct morph levels,
chosen randomly from the following set: –100%, –66%, –34%, 0%,134%,
166%, 1100%. Facial regions outside the target feature were masked by
the background. The target feature varied randomly across trials. Subjects
were instructed to report the odd stimulus in the sequence (the stimulus
most distinct from the other two) by pressing one of the three response
buttons within 2 s from the offset of the last stimulus (RT from stimulus
offset, 0:6660:13 s, mean 6 SD). No feedback was given after the
response. Subjects underwent extensive training before the data collection
to achieve stable and high performance. During training, two of the three
stimuli were identical, and subjects received feedback on whether they cor-
rectly chose the distinct stimulus. The training continued until subjects
reached 70% correct choices (chance level 33%).

Nine of the 12 subjects who participated in the identity categoriza-
tion task also performed the odd-one-out discrimination task using
identity stimuli in separate blocks of the same sessions. Three of the
seven subjects who participated in the expression task performed the
odd-one-out task using expression stimuli. For the identity stimuli,
13,648 trials were collected across the three features (nine subjects,
1516 6 420 trials per subject, mean 6 SD). For the expression stimuli,
3570 trials were collected (three subjects, 11906 121 trials per subject).

Single-feature categorization task. As an alternative method to quan-
tify the visual discriminability for individual facial features, we also per-
formed a single-feature categorization task with a subset of subjects (see
Fig. 11A). In this task, the subjects categorized the facial identities as in the
main identity categorization task but based their decisions on only one fa-
cial feature shown on each trial. Facial regions outside the target feature
were replaced by the background. The task structure was the same as that
of the main task. Trials of the three facial features were randomly inter-
leaved. To capture the full extent of psychometric functions, we used
morph levels ranging from –150% to 1150% (see Fig. 11B). The stimuli
beyond 100% indicate extrapolation from the prototypes, but the extrapo-
lated images looked natural within the tested range.

Four of the 12 subjects who performed the main identity categoriza-
tion task also performed the single-feature task in the same sessions. We
collected in total 5571 trials (13936 117 trials per subject, mean6 SD).

Statistical analysis
Psychometric and chronometric functions. We assessed the effects of

stimulus strength on the subject’s performance by using logistic regres-
sion (Fig. 2A,B) as follows:

logit½Pðchoice2Þ� ¼ a0 1a1s; (1)

where logitðpÞ ¼ logðp=1� pÞ, s is the nominal stimulus strength rang-
ing from –1 (–100% morph level) to 11 (1100% morph level), and ai

are regression coefficients; a0 quantifies the choice bias and a1 quanti-
fies the slope of the psychometric function.

The relationship between the stimulus strength and the subject’s
mean RTs was assessed using a hyperbolic tangent function (Shadlen et
al., 2006; Fig. 2C,D) as follows:

T ¼ b 0

s
tanhðb 1sÞ1 b 2; (2)

where T is the mean RTs measured in milliseconds and b i are model pa-
rameters; b 0 and b 1 determine the stimulus-dependent changes in

Movie 1. The video shows an example image sequence similar to those used in the
experiments. The sequence consists of face images interleaved by masks. For each face
image, the morph levels of three facial features (eyes, nose, mouth) were randomly sampled
from a Gaussian distribution centered on the nominal morph level for the trial (Fig. 1C). The
masks made these stimulus fluctuations subliminal. Note that the size and frame rate of the
video does not reproduce the actual stimuli used in the experiments. [View online]
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decision time, whereas b 2 quantifies the sensory and motor delays that
elongate the RTs but are independent of the decision-making process
(i.e., nondecision time).

Psychophysical Reverse Correlation. To quantify the effect of stimu-
lus fluctuations over time and space (facial features) on choice (Fig. 1D),
we performed psychophysical reverse correlation (Ahumada, 1996;
Okazawa et al., 2018). Psychophysical kernels Kf ðtÞ were calculated as
the difference of average fluctuations of morph levels conditional on the
subject’s choices as follows:

Kf ðtÞ ¼ E½sf ðtÞjchoice 1� � E½sf ðtÞjchoice 2�; (3)

where sf ðtÞ is the morph level of feature f at time t. This analysis only
used trials with low stimulus strength (nominal morph level, 0–14%;
14,213 trials across 12 subjects in the identity task and 7882 trials across
seven subjects in the expression task). For the nonzero strength trials,
the mean strength was subtracted from the fluctuations, and the resid-
uals were used for the reverse correlation. For the time course of psycho-
physical kernels (see Figures 6; 8, D and E; and 9, E and F), we use
stimulus fluctuations up to the median RT aligned to stimulus onset or
the saccade onset to ensure that at least half the trials contributed to the
kernels at each time. Figure 2, E and F, shows the kernels averaged over
time from stimulus onset to median RT. We did not perform any
smoothing on the kernels of aggregated data (see Figs. 2, E and F; 6, A
and B; 8, D and E; and 9, E and F). For individual subjects’ kernels (see
Fig. 6C,D), we applied three-point boxcar smoothing to reduce noise.

Joint psychometric function. To quantify the effect that cofluctuations
of feature strengths have on choice, we quantified the probability of choices
as a function of the joint distribution of the stimulus strengths across trials
(Fig. 3A,B). We constructed the joint distribution of the three features by
calculating the average strength of each feature in the trial. Thus, one trial
corresponds to a point in a 3D feature space (Fig. 1C). In this space, the
probability of choice was computed within a Gaussian window with a SD
of 4%. Figure 3, A and B, shows 2D intersections of this 3D space. We
visualized the probability of choice by drawing iso-probability contours at
0.1 intervals. The trials of all stimulus strengths were included in this analy-
sis, but similar results were also obtained by restricting the analysis to the
low morph levels (�14%). We aggregated data across all subjects, but simi-
lar results were observed within individual subjects.

To quantify linear and multiplicative effects on joint psychometric
functions, we performed the following logistic regression:

logit½Pðchoice2Þ� ¼ wese1wnsn1wmsm1
we;nsesn1wn;msnsm1wm;esmse1

we;n;msesnsm
; (4)

where se, sn, and sm corresponds to the stimulus strengths of eyes, nose,
and mouth averaged within individual trials; we, wn, and wm are model
coefficients for linear factors, whereas we;n, wn;m, wm;e, and we;n;m are
coefficients for multiplicative factors. In this regression, the dynamic
ranges of the linear and multiplicative terms were scaled to match to
ensure a more homogeneous distribution of explainable variance across
different factors; otherwise, the fluctuations of multiplicative terms
would be one or two orders of magnitude smaller than those of the linear
terms. Figure 3, C and D, shows the coefficients averaged across subjects.

Relationship between stimulus strength and subjective evidence. To quan-
titatively predict behavioral responses from stimulus parameters, one must
first know the mapping function between the physical stimulus strength
(morph level) and the amount of evidence subjects acquired from the stim-
ulus. This mapping could be assessed by performing a logistic regression
that relates choice to different ranges of stimulus strength (Fig. 4), similar to
those performed in previous studies (Yang and Shadlen, 2007; Waskom
and Kiani, 2018). For this analysis, we used the following regression:

logit½Pðchoice2Þ� ¼
X

f

X
k2bins

wf ;kNf ;k; (5)

where Nf ;k is the number of stimulus frames that fall into decile k for fea-
ture f in a given trial, and wf ;k are regression coefficients that signify the

subjective evidence assigned to a morph level k of feature f . Division of
feature morph levels into deciles in our regression aimed at limiting the
number of free parameters while maintaining adequate resolution to
quantify the mapping function between the stimulus strength and mo-
mentary evidence. If the subjective evidence in units of log-odds scales lin-
early with the morph level, then wf ;k would linearly change with the
morph level. Plotting wf ;k as a function of feature morph level indicated a
linear relationship, except perhaps for the extreme deciles at the two ends
of the morph line (Fig. 4). For illustration purposes, the fitting lines in
Figure 4 exclude the extreme deciles, but to ensure unbiased reporting of
statistics, we included all the deciles to quantify the accuracy of the linear
fit (see below, Results).

Model fit and evaluation
To quantitatively examine the properties of the decision-making process,
we fit several competing models to the subject’s choices and RTs. Based
on our earlier analyses (Figs. 3, 4), these models commonly use a lin-
ear mapping between feature morph levels and the evidence
acquired from each feature, as well as linear functions for spatial
integration of informative features in each frame. The combined
momentary evidence from each stimulus frame was then integrated
over time. Our main models are therefore extensions of the drift dif-
fusion model, where fluctuations of the three informative facial fea-
tures are accumulated toward decision bounds, and reaching a
bound triggers a response after a nondecision time. Our simplest
model used linear integration over time, whereas our more complex
alternatives allowed leaky integration or dynamic changes of sensitiv-
ity over time. We also examined models that independently accumulate
the evidence from each informative feature (i.e., three competing drift dif-
fusion processes), where the decision and RT were determined by the first
process reaching a bound. Below, we first provide the equations and intu-
itions for the simplest model and explain our fitting and evaluation proce-
dures. Afterward, we explain the alternative models.

Spatial integration in our models linearly combines the strength of
features at each time to calculate the momentary evidence conferred by a
stimulus frame as follows:

mðtÞ ¼ keseðtÞ1knsnðtÞ1kmsmðtÞ; (6)

where seðtÞ, snðtÞ, smðtÞ are the strengths of eyes, nose, and mouth at time
t, and ke; kn; km are the sensitivity parameters for each feature.
Momentary evidence (mðtÞ) was integrated over time to derive the
decision variable. The process stopped when the decision variable
reached a positive or negative bound (6B). The probability of cross-
ing the upper and lower bounds at each decision time can be calcu-
lated by solving the Fokker-Planck equation (Karlin and Taylor,
1981; Kiani and Shadlen, 2009) in the following:

d pðv; tÞ
d t

¼ � d

d v
mðtÞ1 0:5

d 2

d v2
s 2

� �
pðv; tÞ; (7)

where pðv; tÞ is the probability density of the decision variable at different
times. The boundary conditions are as follows:

pðv; 0Þ ¼ d ðvÞ
pð6B; tÞ ¼ 0

; (8)

where d ðvÞ denotes a delta function. The first condition enforces that
the decision variable always starts at zero, and the second condition
guarantees that the accumulation terminates when the decision variable
reaches one of the bounds. We set the diffusion noise (s ) to 1 and
defined the bound height and drift rate in units of s . RT distribution for
each choice was obtained by convolving the distribution of bound cross-
ing times with the distribution of nondecision time, which was defined
as a Gaussian distribution with a mean of T0 and an SD of sT0 .

Overall, this linear integration model had six degrees of freedom: de-
cision bound height (B), sensitivity parameters (ke; kn; km), and the

7880 • J. Neurosci., September 15, 2021 • 41(37):7876–7893 Okazawa et al. · Decision-Making Mechanism for Face Categorization



parameters for nondecision time (T0;sT0 ). We fit model parameters by
maximizing the likelihood of the joint distribution of the observed
choices and RTs in the experiment (Okazawa et al., 2018). For a set of pa-
rameters, the model predicted the distribution of RTs for each possible
choice for the stimulus strengths used in each trial. These distributions
were used to calculate the log likelihood of the observed choice and RT on
individual trials. These log likelihoods were summed across trials to calcu-
late the likelihood function for the dataset. Model parameters were opti-
mized to maximize this function. To avoid local maxima, we repeated the
fits from 10 random initial points and chose the fit with the highest likeli-
hood. The trials of all stimulus strengths were included in this fitting pro-
cedure. The fits were performed separately for each subject. Figure 5, B
and C, shows the average fits across subjects.

To generate the model psychophysical kernels, we created 105 test
trials with 0% stimulus strength using the same stimulus distributions as
in the main task (i.e., Gaussian distribution with a SD of 20%). We simu-
lated model responses for these trials with the same parameters fitted for
each subject. We then used the simulated choices and RTs to calculate
the model prediction for psychophysical kernels of the three features.
Figure 6, A and B, shows the average predictions superimposed on the
observed psychophysical kernels, averaged across subjects (Fig. 6C,D,
single-subject example). Note that the model kernels were not directly fit
to match the data. They were calculated based on an independent set of
simulated 0% stimulus trials, making the comparison in Figure 6
informative.

The same fitting procedure was used for the alternative models
explained below.

Leaky integration. To test the degree of temporal integration, we
added a memory loss (leak) in the decision-making process. This model
is implemented as an Ornstein-Uhlenbeck process, whose Fokker-
Planck equation is the following:

d pðv; tÞ
d t

¼ d

d v

�
l v�mðtÞ

�
1 0:5

d 2

d v2
s 2

� �
pðv; tÞ; (9)

where l is the leak rate. A larger leak rate indicates greater loss of infor-
mation over time. At the limit of an infinitely large leak rate, the model
no longer integrates evidence and makes a decision based solely on
whether the most recently acquired momentary evidence exceeds one of
the decision bounds.

Dynamic sensitivity. To test whether the effect of sensory evidence
on choice is constant over time, we allowed sensitivity to features to be
modulated dynamically. To capture both linear and nonlinear temporal
changes, the modulation included linear (g 1) and quadratic (g 2) terms
as follows:

mðtÞ ¼
�
keseðtÞ1 knsnðtÞ1 kmsmðtÞ

�
� ð11 g 1t1 g 2t

2Þ: (10)

Parallel accumulation of evidence from three facial features. The
models above first integrated the evidence conferred by the three in-
formative facial features (spatial integration) and then accumu-
lated this aggregated momentary evidence over time. We also
considered alternative models, in which evidence from each fea-
ture was accumulated independently over time. These models
therefore included three competing accumulators. Each accumula-
tor received momentary evidence from one feature with fixed sen-
sitivity (ke; kn; km for eyes, nose, mouth). In the model (see Fig.
8A), the accumulator that first reached a decision bound dictated
the choice and decision time. As in the models above, a nondeci-
sion time separated the bound crossing and response time.

To further explore different decision rules, we constructed two variants
of the parallel accumulation model (see Fig. 9A,B). In the first variant, the
decision was based on the sign of the majority of the accumulators (i.e., two
or more of three accumulators) at the moment when one accumulator
reached the bound. In the second variant, the decision was based on the
sign of the sum of the decision variables across the three accumulators at
the time when one accumulator reached the bound. All model variants had

six free parameters (ke; kn; km;B;T0;sT0 ), equal to the degrees of freedom
of the main model explained above.

Analysis of odd-one-out discrimination task
We used subjects’ choices in the odd-one-out task to estimate visual dis-
criminability of different morph levels of the informative features. We
adopted an ideal observer model developed by Maloney and Yang
(2003), where the perception of morph level i of feature f is defined as a
Gaussian distribution, Nðc i;f ;s f Þ, with mean c i;f and SD s f . The dis-
criminability of a triad of stimuli (i, j, k) is determined by perceptual dis-
tances (jc i;f � c j;f j; jc j;f � c k;f j; jc k;f � c i;f j). Specifically, an ideal
observer performing the odd-one-out discrimination of three morph
levels (i; j; k) of feature f would choose i if the perceptual distances of i
from j and k are larger than the perceptual distance of j and k as in the
following:

pðchoice ¼ iÞ ¼ Pðjc i;f � c j;f j � jc j;f � c k;f j.0Þ�

Pðjc i;f � c k;f j � jc j;f � c k;f j.0Þ: (11)

The probabilities on the right side of the equation can be derived
from Nðc i;f ;s f Þ. The probability of choosing j and k can be calculated
in a similar way (Maloney and Yang, 2003). The model captures both
the discriminability of morph levels of the same feature through c i;f ,
and differences across features through s f .

We fit the ideal observer model to the subject’s choices using maxi-
mum likelihood estimation. As there were seven morph levels for each
feature in our task, choices for each feature could be explained using
eight parameters (c i;f for i ¼ 1:::7, and s f ). Six of these parameters are
free (c 2;f :::c 6;f and s f ), and c 1;f and c 7;f were anchored at –1
and 11, respectively, to avoid redundant degrees of freedom in the fits.
The model was fit separately for each subject and feature. To avoid local
maxima, we repeated the fits from 10 random initial points and chose
the parameters that maximized the likelihood function. Because c i;f
changed largely linearly with the feature strength (% morph) in all fits
(see Fig. 10D) and the range of c i;f was fixed at [–1, 11], we could
quantify perceptual discriminability of different features the respective
s f . Specifically, d9 between the two extreme morph levels of a feature is
2=s f as follows:

d9f ¼ ðc 7;f � c 1;f Þ=s f ¼ 2=s f : (12)

If the differences of feature sensitivity parameters (ke; kn; km; Eq. 6)
in the categorization tasks were fully determined by the visual discrimi-
nability of features, that is, there was no task-dependent weighting of the
features,kf would have the same relative scales as the 1=s f . To test this,
we divided the model sensitivities for the three facial features by 1=s f

for each to estimate task-dependent decision weights. The resulting deci-
sion weights showed significant inhomogeneity across features and
between tasks (Fig. 10G), suggesting the presence of task-dependent
weighting of facial features during categorization.

Results
Spatial integration in face categorization
We developed stochastic multifeature face categorization tasks
suitable for studying spatial and temporal properties of the com-
putations underlying the decision-making process. Subjects clas-
sified naturalistic face stimuli into two categories. In each trial,
subjects observed a face stimulus with subliminally varying fea-
tures and, when ready, reported the category with a saccadic
eye movement to one of the two targets (Fig. 1A). The targets
were associated with the two prototypes that represented the dis-
criminated categories—identities of two different people in the
identity categorization task (Fig. 1B, top) or happy and sad
expressions of a person in the expression categorization task
(Fig. 1B, bottom). The stimulus changed dynamically in each
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trial. The dynamic stimulus stream consisted of a sequence of
face stimuli interleaved by masks (Fig. 1A). Each face stimulus
was engineered to have three informative features in the eyes,
nose, and mouth regions, and sensory evidence conferred by the
three informative features rapidly fluctuated over time as
explained in the next paragraph. The masks between face stimuli
kept the changes in facial features subliminal, creating the
impression that a fixed face was covered periodically with vary-
ing noise patterns (see Materials and Methods; Movie 1).

Using a custom algorithm, we could independently morph
the informative facial features (eyes, nose, mouth) between the
two prototypes (Fig. 1B) to create a 3D stimulus space whose
axes correspond to the morph level of the informative features
(Fig. 1C). In this space, the prototypes are two opposite corners
(specified as 6 100% morph), and the diagonal connecting the
prototypes correspond to a continuum of faces where the three
features of each face equally support one category versus the
other. For the off-diagonal faces, however, the three features pro-
vide unequal or even opposing information for the subject’s
choice. In each trial, the nominal mean stimulus strength (%
morph) was sampled from the diagonal line (Fig. 1C, black dots).
The dynamic stimulus stream was created by independently
sampling a stimulus every 106.7ms from a 3D symmetric
Gaussian distribution with the specified nominal mean (SD 20%
morph; Fig. 1C,D). The presented stimuli were therefore fre-
quently off diagonal in the stimulus space. The subtle fluctua-
tions of features influenced subjects’ choices as we show below,
enabling us to determine how subjects combined spatiotemporal
sensory evidence over space and time for face categorization.

We first evaluated subjects’ choices and RTs in both tasks
(Fig. 2). The average correct rate excluding 0% morph level was
91.0% 6 0.7% (mean 6 SEM across subjects) for the identity
task and 89.2% 6 1.2% for the expression task. The choice accu-
racy monotonically improved as a function of the nominal mean
stimulus strength in the trial (Fig. 2A,B; identity task,
a1 ¼ 9:661:8 in Eq. 1; t(11) = 18.3, p = 1.4 � 10�9; expression

task, a1 ¼ 11:363:0, t(6) = 9.8, p = 6.4 � 10�5, two-tailed t test).
Correspondingly, the reaction times became faster for higher
stimulus strengths (Fig. 2C,D; identity task, b 1 ¼ 4:761:0 in Eq.
2; t(11) = 16.4, p = 4.4 � 10�9; expression task, b 1 ¼ 4:961:9,
t(6) = 6.6, p = 5.6 � 10�4). These patterns are consistent with evi-
dence accumulation mechanisms that govern perceptual deci-
sions with simpler stimuli, for example, direction discrimination
of random dots motions (Smith and Vickers, 1988; Ratcliff and
Rouder, 2000; Palmer et al., 2005). However, the decision-mak-
ing mechanisms that do not integrate sensory evidence over time
can also generate qualitatively similar response patterns
(Waskom and Kiani, 2018; Stine et al., 2020). Furthermore,
because in our task design we used identical nominal mean
morph levels for the informative features in a trial, characterizing
behavior based on the mean levels cannot reveal if subjects inte-
grated sensory evidence across facial features (spatial integra-
tion). However, we can leverage the stochastic fluctuations of the
stimulus to test whether sensory evidence was integrated over
space and time. In what follows, we first quantify the properties
of spatial integration and then examine the properties of tempo-
ral integration.

To test whether multiple facial features informed subjects’
decisions, we used psychophysical reverse correlation to evaluate
the effect of the fluctuations of individual features on choice.
Psychophysical kernels were generated by calculating the differ-
ence between the feature fluctuations conditioned on choice
(Eq. 3). We focused on trials with the lowest stimulus strengths
where choices were most strongly influenced by the feature fluc-
tuations (0–14%; mean morph level of each trial was subtracted
from the fluctuations; see Materials and Methods). Figure 2, E
and F, shows the kernel amplitude of the three facial features
averaged over time from stimulus onset to median RT. These
kernel amplitudes quantify the overall sensitivity of subjects’
choices to equal fluctuations of the three features (in %morph
units). The kernel amplitudes markedly differed across features
in each task (identity task: F(2,33) = 55.4, p = 2.8 � 10�11,

Figure 2. Stimulus strength shaped choices and reaction times with differential contributions from informative features. A, B, Psychometric functions based on nominal stimulus strength in
the identity (A) and expression (B) categorization tasks. Gray lines are logistic fits (Eq. 1). Error bars are SEM across subjects (most of them smaller than data dots). C, D,
Chronometric functions based on nominal stimulus strength in the two tasks. Average reaction times were slower for the intermediate, most ambiguous stimulus strengths. Gray
lines are the fits of a hyperbolic tangent function (Eq. 2). E, F, Psychophysical reverse correlation using feature fluctuations revealed positive but nonuniform contributions of
multiple features in both tasks. The amplitude of the psychophysical kernel for a feature was calculated as the difference of the average feature fluctuations conditioned on the
two choices. Trials with 0–14% nominal stimulus strength were used in this analysis. Error bars indicate SEM across subjects. G, H, The kernel amplitudes for individual subjects.
Most subjects showed positive kernels for multiple facial features.

7882 • J. Neurosci., September 15, 2021 • 41(37):7876–7893 Okazawa et al. · Decision-Making Mechanism for Face Categorization

https://doi.org/10.1523/JNEUROSCI.3055-20.2021.video.1


expression task: F(2,18) = 33.6, p = 8.5 � 10�7; one-way
ANOVA), greatest for the eyes region in the identity task (p ,
9.5� 10�10 compared with nose and mouth, post hoc Bonferroni
test) and for the mouth region in the expression task (p , 3.9 �
10�5 compared with eyes and nose).

Critically, the choice was influenced by more than one fea-
ture. In the identity task, all three features had significantly posi-
tive kernel amplitudes (eyes, t(11) = 15.4, p = 8.6 � 10�9; nose,
t(11) = 4.8, p = 5.4 � 10�4; mouth, t(11) = 4.2, p ¼ 0:0015, two-
tailed t test for each feature). In the expression task, mouth and
eyes had statistically significant kernel amplitudes, and nose had
a positive kernel, although it did not reach significance (mouth,
t(6) = 10.3, p = 4.8 � 10�5; eyes, t(6) = 3.6, p = 0.012; nose, t(6) =
2.2, p = 0.072). Positive kernels for multiple facial features were
prevalently observed for individual subjects too (Fig. 2G,H).
Therefore, the pooled results are not because of mixing data
from multiple subjects with distinct behavior. These results
suggest that subjects use multiple facial features for categori-
zation, but the features nonuniformly contribute to their deci-
sions, and their relative contributions differ between the tasks
(interaction between feature kernels and tasks: F(2,10) = 90.5, p
= 3.9 � 10�7; two-way repeated measures ANOVA with six
subjects who performed both tasks), which we revisit in the
following sections.

Although the amplitude of psychophysical kernels informs us
about the overall sensitivity of choice to feature fluctuations in
the face stimuli, it does not clarify the contribution of sensory
and decision-making processes to this sensitivity. Specifically,
subjects’ choices may be more sensitive to changes in one feature
because the visual system is better at discriminating the feature
changes (visual discriminability) or because the decision-making
process attributes a larger weight to the changes of that feature

(decision weights; Schyns et al., 2002; Sigala and Logothetis,
2002). We dissociate these factors in the final section of Results,
but for the intervening sections, we focus on the overall sensitiv-
ity of choice to different features.

Figure 3. Spatial integration across informative features was largely linear. A, B, Two-dimensional slices of the psychometric function for the three-dimensional stimulus
space. The iso-probability contours are shown for the probability of choice 2 as a function of the true average morph level of two of the three informative features in each
trial. The third informative feature was marginalized for A and B. The iso-probability contours are drawn at 0.1 intervals and moderately smoothed with a 2D Gaussian func-
tion (SD 4% morph). Thin lines are actual data, and thick pale lines are a logistic fit (Eq. 4; the thickness of the lines reflects 2 SEM of the fitted parameters). The straight
and parallel contour lines are compatible with a largely linear spatial integration process across features, with the slope of the contours reflecting the relative contribution
of the features illustrated in each panel. C, D, A logistic regression to evaluate the relative contribution of individual features and the multiplicative interactions to subjects’
choices. The regression coefficients supported a largely linear spatial integration process; the interaction terms have minimal impact on choice beyond the linear integration
across features. E, eyes; N, nose; M, mouth. Error bars indicate SEM across subjects.

Figure 4. The evidence conferred by a feature mapped linearly to the feature
morph level, especially for the intermediate stimuli. The linear integration of fea-
tures across space allowed accurate quantification of the evidence that subjects
inferred from each feature. We split morph levels of each feature into 10 quantiles
and used a logistic regression that explained choices based on the number of occur-
rences of the quantiles in each trial, quantifying the subjective evidence of each
morph level in units of log odds of choice. Subjective evidence linearly scaled with
the morph level for each feature, except for the highest strengths. The lines are lin-
ear regressions of subjective evidence against feature morphs, excluding the high-
est strengths. Error bars indicate SEM across subjects.

Okazawa et al. · Decision-Making Mechanism for Face Categorization J. Neurosci., September 15, 2021 • 41(37):7876–7893 • 7883



Linearity of spatial integration of facial
features
How do subjects integrate information
from multiple spatial features? Could it be
approximated as a linear process, or does it
involve significant nonlinear effects, for
example, synergistic interactions that mag-
nify the effect of cofluctuations across fea-
tures? Nonlinear effects can be empirically
discovered by plotting joint psychometric
functions that depict subjects’ accuracy as a
function of the strength of the facial fea-
tures (Fig. 3A,B). Here, we define the true
mean strength of each feature as the aver-
age of the feature morph levels over the
stimulus frames shown on each trial (see
Figs. 6, 7 for temporal effects). The plots
visualize the three orthogonal 2D slices of
the 3D stimulus space (Fig. 1C), and the
contour lines show the probability of
choosing the second target (choice 2) at the
end of the trial.

These iso-performance contours (Fig.
3A,B, thin lines) were largely straight and
parallel to each other, suggesting that a
weighted linear integration across features
underlies behavioral responses. The slope
of contours in each 2D plot reflects the rel-
ative contribution of the two facial features
to choice. For example, the nearly vertical
contours in the eyes-versus-nose plot of
the identity task indicate that eyes had a
much greater influence on subjects’
choices, consistent with the amplitudes of
psychophysical kernels (Fig. 2E). Critically,
the straight and parallel contour lines indi-
cate that spatial integration does not
involve substantial nonlinearity. A linear
model, however, does not explain curved
contours, which appear at the highest
morph levels, especially in the 2D plots of
the less informative pairs (e.g., the nose �
mouth plot for the identity task). Multiple
factors could give rise to the curved con-
tours. First, subjects rarely make mistakes
at the highest morph levels, reducing our
ability to perfectly define the contour lines
at those levels. Second, the 2D plots mar-
ginalize over the third informative feature,
and this marginalization is imperfect
because of finite trial counts in the dataset.
Put together, we cannot readily attribute
the presence of curved contours at the
highest morph levels to nonlinear proc-
esses and should rely on statistical tests for
discovery. As we explain below, statistical
tests fail to detect nonlinearity in the inte-
gration of features.

To quantify the contributions of linear and nonlinear factors,
we performed a logistic regression on the choices using both linear
and nonlinear multiplicative combinations of the feature strengths
(Eq. 4). The model accurately fit to the contour lines in Figure 3,
A and B (thick pale lines; identity task, R2 ¼ 0:998; expression

task, R2 ¼ 0:999; the thickness of the lines reflects 2 SEM of the
logistic parameters). The model coefficients (Fig. 3C,D) show sig-
nificant positive sensitivities for the linear effects of all facial fea-
tures in the identity task (eyes, t(11) = 10.5, p = 4.3 � 10�7; nose,
t(11) = 4.6, p = 8.2� 10�4; mouth, t(11) = 4.8, p = 5.2� 10�4, two-
tailed t test) and in the expression task (eyes, t(6) = 4.7, p = 0.0032;

Figure 5. A model that linearly integrates sensory evidence over space and time accounted for choice and reaction
time. A, Multifeature drift diffusion model. The model linearly integrates the morph levels of the three informative features
with static spatial sensitivities (ke; kn; km) to create the momentary evidence, which is then integrated over time to create
a decision variable. The integration process continues until the decision variable reaches one of the two decision bounds,
corresponding to choices 1 and 2. Reaction time equals the time to reach the bound (decision time) plus a nondecision
time that reflects the aggregate of sensory and motor delays. B, C, Model fit to choices, mean reaction times, and reaction
time distributions in the identity (B) and expression (C) categorization tasks. Data points (dots) are the same as those in
Figure 2A–D. The reaction time distribution for each stimulus strength was generated based on all trials with the absolute
strength matching the plot title. Black bars are the data, and red lines are model fits. D, E, The model accurately fits all
single subject’s data. An example subject is shown.
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nose, t(6) = 3.4, p = 0.015; mouth, t(6) = 9.2, p = 9.5 � 10�5), but
no significant effect for nonlinear terms (p. 0.27 for all multipli-
cative terms in both tasks). These results were largely consistent
for individual subjects too (11 of 12 subjects in identity and 7 of 7
in expression task showed no significant improvement in fitting
performance by adding nonlinear terms, p. 0.05; likelihood ratio
test, Bonferroni corrected across subjects). Overall, linear integra-
tion provides an accurate and parsimonious account of how fea-
tures were combined over space for face categorization.

Linearity of the mapping between stimulus strength and
subjective evidence
Quantitative prediction of behavior requires understanding the
mapping between the stimulus strength as defined by the experi-
menter (morph level in our experiment) and the evidence

conferred by the stimulus for the subject’s de-
cision. The parallel linear contours in Figure
3 demonstrate that the strength of one in-
formative feature can be traded for another
informative feature to maintain the same
choice probability. They further show that
this trade-off is largely stable across the stim-
ulus space, strongly suggesting a linear map-
ping between morph levels and inferred
evidence.

To formally test this hypothesis, we
quantified the relationship between feature
strengths and the effects of features on
choice by estimating subjective evidence in
log-odds units. Following the methods
developed by Yang and Shadlen (2007), we
split the feature strengths (% morph) of
each stimulus frame into 10 levels and per-
formed a logistic regression to explain sub-
jects’ choices based on the number of
occurrences of different feature morph
levels in a trial. The resulting regression
coefficients correspond to the change of
the log odds of choice furnished by a fea-
ture morph level. For both the identity and
expression morphs, the stimulus strength
mapped linearly onto subjective evidence
(Fig. 4; identity task, R2 = 0.94; expression
task, R2 = 0.96), with the exception of the
highest stimulus strengths, which exerted
slightly larger effects on choice than
expected from a linear model. The linear-
ity for a wide range of morph levels—espe-
cially for the middle range in which
subjects frequently chose both targets—
permits us to approximate the total evi-
dence conferred by a stimulus as a
weighted sum of the morph levels of the
informative features.

Temporal integration mechanisms
The linearity of spatial integration signifi-
cantly simplifies our approach to investigate
integration of sensory evidence over time.
We adopted a quantitative-model-based
approach by testing a variety of models that
have the same linear spatial integration pro-
cess but differ in ways that use stimulus in-
formation over time. We leveraged stimulus

fluctuations within and across trials to identify the mechanisms
that shaped the behavior. We further validated these models by
comparing predicted psychophysical kernels with the empirical
ones.

In our main model, the momentary evidence from each stim-
ulus frame is linearly integrated over time (Fig. 5A). The mo-
mentary evidence from a stimulus frame is a linear weighted
sum of the morph levels of informative features in the stimulus,
compatible with linear spatial integration shown in the previous
sections. The model assumes that sensitivities for these informa-
tive features (ke; kn; km) are fixed within a trial. However, because
the stimulus is dynamic and stochastic, the rate of increase of
accumulated evidence varies over time. The decision-making
process is noisy, with the majority of noise originating from the

Figure 6. The linear spatiotemporal integration model accurately accounts for the dynamics of psychophysical kernels.
A, B, Dynamics of psychophysical kernels averaged across subjects. Shading indicates SEM. Subjects’ decisions are most
strongly influenced by the eye information in the identity task and the mouth information in the expression task, evi-
denced by the differential amplitudes of individual feature psychophysical kernels. Gray lines are model fits. Note that
feature sensitivities are fixed in the model and the non-stationary kernels do not indicate changes of sensitivity over
time (Okazawa et al., 2018). C, D, The model accurately accounts for single subject’s kernels. An example subject (the
same as Fig. 5D,E) is shown.
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stimulus representation in sensory cortices and inference of mo-
mentary evidence from these representations (Brunton et al.,
2013; Drugowitsch et al., 2016; Waskom and Kiani, 2018).
Because of the noise, the decision-making process resembles a
diffusion process with variable drift over time. The process stops
when the decision variable (accumulated noisy evidence) reaches
one of the two bounds, corresponding to the two competing
choices in the task. The bound that is reached dictates the choice,
and the reaction time equals the time to bound (decision time)
plus a nondecision time composed of sensory and motor delays
(Smith and Vickers, 1988; Link, 1992; Ratcliff and Rouder, 2000;
Gold and Shadlen, 2007). For each stimulus sequence, we calcu-
lated the probability of different choices and expected distribu-
tion of reaction times, adjusting model parameters to best match
the model with the observed behavior (maximum likelihood fit-
ting of the joint distribution of choice and RT; see Materials and
Methods). The model accurately explained subjects’ choices
(identity, R2 = 0.996 0.002; expression: R2 = 0.986 0.005, mean
6 SEM across subjects) and mean reaction times (identity, R2 =
0.866 0.05; expression, R2 = 0.816 0.05) as well as the distribu-
tions of reaction times (Fig. 5B,C). The accurate match between
the data and the model was also evident within individual sub-
jects (Fig. 5D,E).

The same model also quantitatively explains the psychophysi-
cal kernels (Fig. 6; identity task, R2 = 0.86; expression task, R2 =
0.84). The observed kernels showed characteristic temporal dy-
namics in addition to the inhomogeneity of amplitudes across
features, as described earlier (Fig. 2E,F). The temporal dynamics
are explained by decision bounds and nondecision time in the
model (Okazawa et al., 2018). When aligned to stimulus onset,
the kernels decreased over time. This decline happens in the
model because nondecision time creates a temporal gap between

bound crossing and the report of the decision, making stimuli
immediately before the report inconsequential for the decision.
When aligned to the saccadic response, the kernels peaked sev-
eral hundred milliseconds before the saccade. This peak emerges
in the model because stopping is conditional on a stimulus fluc-
tuation that takes the decision variable beyond the bound,
whereas the drop near the response time happens again because
of the nondecision time. Critically, the model assumptions about
static sensitivity and linear integration matched the observed ker-
nels. Further, the inequality of kernel amplitudes across facial fea-
tures and tasks were adequately captured by the different
sensitivity parameters for individual features (ke; kn; km) in the
model.

To further test properties of temporal integration, we chal-
lenged our model with two plausible extensions (Fig. 7). First,
integration may be imperfect, and early information can be grad-
ually lost over time (Usher and McClelland, 2001; Bogacz et al.,
2006). Such a leaky integration process can be modeled by incor-
porating an exponential leak rate in the integration process (Fig.
7A). When this leak rate becomes infinitely large, the model
reduces to a memory-less process that commits to a choice if the
momentary sensory evidence exceeds a decision bound, that is,
extrema detection (Waskom and Kiani, 2018; Stine et al., 2020).
To examine these alternatives, we fit the leaky integration model
to the behavioral data. Although the leak rate is difficult to assess
in typical perceptual tasks (Stine et al., 2020), our temporally
fluctuating stimuli provide a strong constraint on the range of
the leak rate that matches behavioral data because increased leak
rates lead to lower contribution of earlier stimulus fluctuations
to choice. We found that although the fitted leak rate was statisti-
cally greater than zero (Fig. 7B; identity task, t(11) = 3.01, p =
0.012; expression task, t(6) = 2.99, p = 0.024), it was consistently
small across subjects (identity task, mean6 SEM across subjects,
0.013 6 0.004s�1; expression task, 0.005 6 0.002s�1). These leak
rates correspond to integration time constants larger than 100 s,
which is much longer than the duration of each trial (;1 s), sup-
porting near-perfect integration over time.

The second extension allows time-varying sensitivity to sensory
evidence within a trial (Levi et al., 2018), as opposed to the constant
sensitivity assumed in our main model. To capture a wide variety of
plausible temporal dynamics, we added linear and quadratic tempo-
ral modulations of drift rate over time to the model (Fig. 7C; Eq.
10). However, the modulation parameters were quite close to
zero (Fig. 7D; identity task: g 1 ¼ �0:1660:084, t(11) = �1.88, p =
0.087; g 2 ¼ 0:02760:032, t(11) = 0.85, p = 0.41; expression task:
g 1 ¼ �0:1560:17, t(6) = �0.86, p = 0.43; g 2 ¼ 0:02960:085,
t(6) = 0.34, p = 0.75, two-tailed t test), suggesting a lack of substantial
temporal dynamics. Note, however, that the models with slowmod-
ulations of sensitivity cannot capture the very fast modulations in
the observed psychophysical kernels. Although the fits might
improve by allowing fast modulations of sensitivity (5–10 Hz), we
are unaware of sensory or decision mechanisms that can create
such fast fluctuations. These fluctuations likely arise from noise
because of finite samples in our dataset. Overall, the temporal prop-
erties of the decision-making process are consistent with linear mul-
tifeature integration with largely static sensitivities.

Testing the sequence of spatiotemporal integration
In the models above, temporal integration operates on the mo-
mentary evidence generated from the spatial integration of fea-
tures of each stimulus frame. But is it necessary for spatial
integration to precede temporal integration? Although our
data-driven analyses above suggest that subjects combined

Figure 7. Spatiotemporal integration has static sensitivity to features and minimal forget-
ting (leak). We used two extensions of the multifeature drift diffusion model to test for leaky
integration and modulation of feature sensitivities over time. A, Schematic of the leaky inte-
gration model. An exponential leak term was added to the temporal integration process to
examine potential loss of information over time (Eq. 9). The leak pushes the decision variable
toward zero (gray arrows), reducing the effect of earlier evidence. B, Fitting the leaky inte-
gration model to behavioral data revealed leak rates close to zero for both the identity and
expression categorization tasks. C, Schematic of the model with dynamic modulation of fea-
ture sensitivities. We added a second-order polynomial modulation function to investigate
potential temporally nonuniform influence of stimulus features on choice within a trial (Eq.
10). The function allows for a variety of temporal patterns, including ascending, descending,
and nonmonotonic changes. D, Fitting the model revealed no substantial change in sensitiv-
ities over time, with both the linear and quadratic terms of the modulation function close to
zero. Error bars indicate SEM across subjects.
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information across facial features (Figs. 3, 4), it might be plausi-
ble that spatial integration follows the temporal integration pro-
cess instead of preceding it. Specifically, the evidence conferred
by each informative facial feature may be independently inte-
grated over time, and then a decision may be rendered based on
the collective outcome of the three feature-wise integration proc-
esses (i.e., spatial integration following temporal integration). A
variety of spatial pooling rules may be used in such a model. A
choice can be determined by the first feature integrator that
reaches the bound (Fig. 8A), by the majority of feature integra-
tors (Fig. 9A), or by the sum of the decision variables of the inte-
grators after the first bound crossing (Fig. 9B). In all of these
model variants, the choice is shaped by multiple features because
of the stochasticity of the stimuli and noise (Otto and
Mamassian, 2012). For example, the eyes integrator would

dictate the choice in many trials of the
identity categorization task, but the other
feature integrators would also have a
smaller but tangible effect, compatible
with the differential contribution of fea-
tures to choice, as shown in the previous
sections (Fig. 2E,F). Are such parallel inte-
gration models compatible with the em-
pirical data?

Figure 8 demonstrates that models
with late spatial integration fail to explain
the behavior. Although these models
could fit the psychometric and chrono-
metric functions (Fig. 8B,C), they under-
performed our main model (model log-
likelihood difference for the joint distri-
bution of choice and RT, �475:5 in the
identity task and�307:6 in the expression
task). Moreover, and critically, they did
not replicate the subjects’ psychophysical
kernels (Fig. 8D,E; identity task, R2 = 0.46;
expression task, R2 = 0.51). They system-
atically underestimated saccade-aligned
kernel amplitudes for the dominant fea-
ture of each task (eyes for identity catego-
rization and mouth for expression
categorization). Further, the predicted
model kernels peaked closer to the sac-
cade onset than the empirical kernels.
Because the psychophysical kernel ampli-
tude is inversely proportional to the deci-
sion bound (Okazawa et al., 2018), the
lower amplitude of these model kernels
suggests that the model overestimated the
decision bound, which necessitated a
shorter nondecision time to compensate
for the elongated decision times caused by
the higher bounds. These shorter nonde-
cision times pushed model kernel peaks
closer to the saccade onset.

In general, late spatial integration
causes a lower signal-to-noise ratio and is
therefore more prone to wrong choices
because it ignores part of the available
sensory information by terminating the
decision-making process based on only
one feature or by suboptimally pooling
across spatial features after the termina-
tion (Fig. 9, test of different spatial pool-

ing rules). To match subjects’ high performance, these models
would therefore have to alter the speed accuracy trade-off by push-
ing the decision bound higher than those used by the subjects.
However, this change leads to qualitative distortions in the psycho-
physical kernels. Our approach to augment standard choice and RT
analyses with psychophysical reverse correlations was key to identify
these qualitative differences (Okazawa et al., 2018), which can be
used to reliably distinguish models with different orders of spatial
and temporal integration.

What underlies differential contribution of facial features to
choice: visual discriminability or decision weight?
The psychophysical kernels and decision-making models in the
previous sections indicated that subjects’ choices were differentially

Figure 8. Models with late spatial integration across features fail to explain the experimental data. A, Schematic of a par-
allel integration model in which single features are independently integrated over time to a decision bound. The first feature
that reaches the bound dictates the choice (see Fig. 9 for alternative decision rules). B, C, Model fits to psychometric and
chronometric functions. Conventions are the same as in Figure 5 B and C. D, E, The model fails to explain psychophysical ker-
nels. Notable discrepancies with the data are visible in the kernels for eyes in the identity task and the kernels for mouth in
the expression task. Conventions are the same as in Figure 6.
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sensitive to fluctuations of the three informative fea-
tures in each categorization task (Figs. 2E,F; 3C,D;
4) and across tasks (drift diffusion model sensitivity
for features depicted in Fig. 10E; F(2,51) = 47.4, p =
2.3� 10�12, two-way ANOVA interaction between
features and tasks). However, as explained earlier, a
higher overall sensitivity to a feature could arise
from better visual discriminability of changes in the
feature or a higher weight applied by the decision-
making process to the feature (Fig. 10A). Both fac-
tors are likely present in our task. Task-dependent
changes of feature sensitivities support the existence
of flexible decision weights. Differential visual dis-
criminability is a likely contributor too because of
distinct facial features across faces in the identity
task or expressions in the expression task. To deter-
mine the exact contribution of visual discriminabil-
ity and decision weights to the overall sensitivity,
we measured the discrimination performance of the
same subjects for each facial feature using two tasks
—odd-one-out discrimination (Fig. 10B) and cate-
gorization of single facial features (Fig. 11A).

In the odd-one-out task, subjects viewed three
consecutive images of a facial feature (eyes, nose,
or mouth) with different stimulus strengths and
chose the one that was perceptually distinct from
the other two (Fig. 10B). Subjects successfully
identified the morph level that was distinct from
the other two and had higher choice accuracy
when the morph level differences were larger
(Fig. 10C). However, the improvement of accu-
racy as a function of morph level difference was
not identical across features. The rate of increase
(slope of psychometric functions) was higher for
the eyes of the identity-task stimuli and higher
for the mouth of the expression-task stimuli, sug-
gesting that the most sensitive features in those
tasks were most discriminable too. We used a
model based on signal detection theory (Maloney
and Yang, 2003) to fit the psychometric functions
and retrieve the effective representational noise
(s f ) for each facial feature (Fig. 10D; see
Materials and Methods). As expected from the
psychometric functions (Fig. 10C), visual dis-
criminability, defined as the inverse of the rep-
resentational noise in the odd-one-out task,
was slightly higher for the eyes of the identity-
task stimuli and for the mouth of the expres-
sion-task stimuli (Fig. 10F; identity task, F(2,16)
= 7.4, p = 0.0054; expression task, F(2,4) = 22.7, p = 0.0066,
repeated measures ANOVA).

Similar results were also obtained in the single-feature cat-
egorization tasks, where subjects performed categorizations
similar to the main task while viewing only one facial feature
(Fig. 11A). We derived the model sensitivity for each facial
feature by fitting a drift diffusion model to the subjects’
choices and RTs (Fig. 11B). Because subjects discriminated a
single feature in this task, differential weighting of features
could not play a role in shaping their behavior, and the model
sensitivity for each feature was proportional to the feature dis-
criminability. The order of feature discriminability was similar
to that from the odd-one-out task, with eyes showing more
discriminability for the stimuli of the identity task (Fig. 11C).

Although the results of both tasks support that visual discrim-
inability was nonuniform across facial features, this contrast was
less pronounced than that of the model sensitivities in the main
task (Fig. 10E,F). Consequently, dividing the model sensitivities
by the discriminability revealed residual differences reflecting
nonuniform decision weights across features (Fig. 10G; F(2,30) =
6.1, p = 0.0059, two-way ANOVA, main effect of features) and
between the tasks (F(2,30) = 10.9, p = 2.8 � 10�4 , two-way
ANOVA, interaction between features and tasks). In other
words, context-dependent decision weights play a significant
role in the differential contributions of facial features to deci-
sions. Furthermore, these weights suggest that subjects rely
more on more informative (less noisy) features. In fact, the
decision weights were positively correlated with visual dis-
criminability (Fig. 10H; R = 0.744, p = 2.0 � 10�7), akin to an

Figure 9. The mismatch between data and late spatial integration models persists with different decision rules.
A, A parallel integration model that independently accumulates evidence of the three facial features and commits
to a choice favored by the majority of the integrators. When one of the three integrators reaches a bound, the
model determines the preferred choice of each integrator based on the sign of the decision variable of the integra-
tor. The model then chooses the option supported by the majority of the integrators (i.e., two or more). B,
Another variant of the parallel integration model that renders a decision based on the summed decision variables
of the three integrators. When one integrator reaches a bound, the decision variables of the three accumulators
are added, and a decision is made based on the sign of the total evidence. C, D, Model fits to psychometric and
chronometric functions. The plots show the results for the identity task. E, F, Both models fail to account for the
dynamics of psychophysical kernels. Similar results were obtained for the expression task.
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optimal cue integration process (Ernst and Banks, 2002;
Oruç et al., 2003; Drugowitsch et al., 2014). Together, the de-
cision-making process in face categorization involves con-
text-dependent adjustment of decision weights that improves
behavioral performance.

Discussion
Successful categorization or identification of objects depends on
elaborate sensory and decision-making processes that transmit
and use sensory information to implement goal-directed

behavior. The properties of the decision-making process remain
underexplored for object vision. Existing models commonly
assume instantaneous decoding mechanisms based on linear
readout of population responses of sensory neurons (Hung et al.,
2005; Majaj et al., 2015; Rajalingham et al., 2015; Chang and
Tsao, 2017), but they are unable to account for aspects of behav-
ior that are based on deliberation on temporally extended visual
information common in our daily environments. By extending a
quantitative framework developed for studying simpler percep-
tual decision (Ratcliff and Rouder, 1998; Palmer et al., 2005;
Gold and Shadlen, 2007; O’Connell et al., 2012; Waskom et al.,

Figure 10. Differential sensitivity of decisions to facial features arises from a combination of visual discriminability and decision weights. A, Schematic of the factors that shape differential
sensitivities to the informative features in the drift diffusion model (DDM) depicted in Figure 5A. Feature sensitivity in a task arises from the following factors: (1) visual discriminability of differ-
ent morph levels of the feature and (2) the weight that the decision-making process attributes to the feature. These factors are distinct as visual discriminability arises from the precision of sen-
sory representations, whereas decision weights are flexibly set to achieve a particular behavioral goal. We define visual discriminability of a feature as the inverse of representational noise in
units of %morph (s f , where f could be e, n, or m for eyes, nose, and mouth, respectively), and the overall sensitivity to a feature as visual discriminability (1=s f ) multiplied by the decision
weight (wf). To determine the relative contribution of these two factors, one needs to measure the visual discriminability of facial features. B, The design of an odd-one-out discrimination task
to measure the visual discriminability of individual features. In each trial, subjects viewed a sequence of three images of the same feature and reported the one that was perceptually most dis-
tinct from the other two. The three images had distinct morph levels (SA, SB, SC, sorted in ascending order). C, Subjects’ accuracy as a function of the distinctness of the correct stimulus from
the other two. Distinctness was quantified as jðSB � SAÞ1ðSB � SCÞj. The lines are the fits of an ideal observer model (see Materials and Methods). The accuracy for 0% distinctness was
slightly larger than a random choice (33%) because subjects were slightly less likely to choose the middle morph level (SB). D, We explained the subjects’ responses based on the representa-
tional noise of a feature (s ) and the relative distance between individual pairs of stimuli in a perceptual space (c i and c j for stimuli i and j; Eq. 11). The c for intermediate morph levels
and s were estimated from data using a maximum likelihood fit. The c changes largely linearly with morph levels, ensuring that one can use the inverse of the representational noise
(1=s ) as a metric for the visual discriminability of each facial feature. Data points are the estimated c , and lines are the best least squares fits. E, The sensitivity parameters of the multifea-
ture drift diffusion model (Fig. 5A) for the informative features in each task. F, Visual discriminability (1=s ) estimated using the ideal observer model. Facial features have different discrimina-
bility with the eyes slightly more discriminable for the faces used in the identity categorization task and the mouth more discriminable in the expression categorization task. However, these
differences in discriminability across features are less pronounced than those in the overall sensitivity (E). G, Decision weights (w in A) calculated by dividing the overall sensitivity by the visual
discriminability of each feature. H, Positive correlation between the visual discriminability (F) and the decision weights (G) of features is consistent with optimal cue combination. Each dot cor-
responds to the values of one facial feature of one subject. The plot aggregates data from both the identity and expression tasks. Both the discriminability and decision weights are normalized
within subjects (the sum across all features is fixed to 1) to account for the variability of absolute discriminability and weights across subjects.
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2019), we establish an experimental and modeling approach that
quantitatively links sensory inputs and behavioral responses dur-
ing face categorization. We show that human face categorization
constitutes spatiotemporal evidence integration processes. A spa-
tial integration process aggregates stimulus information into mo-
mentary evidence, which is then integrated over time by a
temporal integration process. The temporal integration is largely
linear and because of long time constants has minimal or no loss
of information over time. The spatial integration is also lin-
ear and accommodates flexible behavior across tasks by
adjusting the weights applied to visual features. These weights
remain stable over time in our task, providing no indication that
the construction of momentary evidence or the informativeness
changes with stimulus viewing time.

Our approach bridges past studies on object recognition and
perceptual decision-making by formulating face recognition as a
process that integrates sensory evidence over space and time.
Past research on object recognition focused largely on feedfor-
ward visual processing and instantaneous readout of the visual
representations, leaving a conceptual gap for understanding the

temporally extended processes that underlie perception and
action planning based on visual object information. Several stud-
ies have attempted to fill this gap by using noisy object stimuli
(Heekeren et al., 2004; Philiastides and Sajda, 2006; Ploran et al.,
2007; Philiastides et al., 2014; Heidari-Gorji et al., 2021) or se-
quential presentation of object features (Ploran et al., 2007; Jack
et al., 2014). However, the stimulus manipulations in these stud-
ies did not allow a comprehensive exploration of both spatial
and temporal processes. They either created a one-dimensional
stimulus axis that eroded the possibility to study spatial integra-
tion across features or created temporal sequences that eroded
the possibility to study temporal integration jointly with spatial
integration. Our success hinges on a novel stimulus design,
namely, independent parametric morphing of individual facial
features and subliminal spatiotemporal feature fluctuations
within trials. Independent feature fluctuations were key to char-
acterize the integration processes, and the subliminal sensory
fluctuations ensured that our stimulus manipulations did not al-
ter subjects’ decision strategy, addressing a fundamental chal-
lenge (Murray and Gold, 2004) to alternative methods (e.g.,
covering face parts; Gosselin and Schyns, 2001; Schyns et al.,
2002; but see Gosselin and Schyns, 2004 ).

We used three behavioral measures—choice, reaction time,
and psychophysical reverse correlation—to assess the mecha-
nisms underlying the behavior. Some key features of the deci-
sion-making process cannot be readily inferred solely from
choice and reaction time, for example, the time constant of the
integration process (Ditterich, 2006; Stine et al., 2020). However,
the inclusion of psychophysical kernels provides a more powerful
three-pronged approach (Okazawa et al., 2018) that enabled us
to establish differential sensitivities for informative features
(Fig. 2E,F), linearity of spatial integration (Fig. 3), long time
constants (minimum information loss) for temporal integra-
tion (Fig. 7B), static feature sensitivities (Fig. 7D), and failure
of late spatial integration in the parallel feature integration
models (Figs. 8, 9). The precise agreement of psychophysical
kernels between model and data (Fig. 6) reinforces our con-
clusion that face categorization arises from linear spatiotem-
poral integration of visual evidence.

Face perception is often construed as a holistic process
because breaking the configuration of face images, for
example, removing parts (Tanaka and Farah, 1993), shifting
parts (Young et al., 1987), or inverting images (Yin, 1969),
reduces performance for face discrimination (Taubert et al.,
2011), categorization (Young et al., 1987), or recognition
(Tanaka and Farah, 1993). However, the mechanistic
underpinnings of these phenomena remain elusive (Richler
et al., 2012). The linear spatial integration mechanism has
the potential to provide mechanistic explanations for some
of these holistic effects. For example, changes in the config-
uration of facial features could reduce visual discriminabil-
ity of facial features (Murphy and Cook, 2017), disrupt
spatial integration (Gold et al., 2012; Witthoft et al., 2016),
or cause suboptimal weighting of informative features
(Sekuler et al., 2004). Holistic effects can also be manifested
as impairment in facial part recognition when placed to-
gether with other uninformative facial parts (composite
face effect; Young et al., 1987). This might arise because
face stimuli automatically trigger spatial integration that
combines information from irrelevant parts. Our approach
offers a quantitative path to test these possibilities using a
unified modeling framework—a fruitful direction to pursue
in the future.

Figure 11. Visual discriminability assessed using a single feature categorization task sup-
ports nonuniform decision weights in the main task. A, To confirm the results of the odd-
one-out task, we also performed a single-feature categorization task. The subjects catego-
rized the facial identities as in the identity task but based their decisions only on one facial
feature shown on each trial. B, Psychometric and chronometric functions for each facial fea-
ture. As a comparison, the same subjects’ performance in the identity task is shown in black.
The lines are the fits of a drift diffusion model for each facial feature. C, Comparison of the
model feature sensitivities in the main task (left) and in the single feature categorization
task (middle). Dividing the feature sensitivities of the two tasks yields the decision weight
for each feature. The results support unequal weighting over features (right), consistent with
the results of the odd-one-out task (Fig. 10E–G).
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The linearity of spatial integration over facial features has
been a source of controversy in the past (Gold et al., 2012; Gold,
2014; Shen and Palmeri, 2015). The controversy partly stems
from the ambiguity in what visual information contributes to
face recognition. Some suggest that local shape information of fa-
cial parts accounts for holistic face processing (McKone and
Yovel, 2009), whereas others suggest that configural information,
such as distances between facial features, gives rise to nonlinear-
ities (Shen and Palmeri, 2015) and holistic properties (Le Grand
et al., 2001; Maurer et al., 2002). Our study does not directly
address this question because feature locations in our stimuli
were kept largely constant to facilitate morphing between faces.
However, our approach can be generalized to include configural in-
formation and systematically tease apart spatial integration over fea-
ture contents from integration over the relative configuration of
features. An ideal decision-making process would treat configural
information similar to content information by linearly integrating
independent pieces of information. Although our current results
strongly suggest linear integration over feature contents, we remain
open to emergent nonlinearities for configural information.

Another key finding in our experiments is flexible, task-de-
pendent decision weights for informative features (Fig. 10). Past
studies demonstrated the preferential use of more informative
features over others during face and object categorization
(Schyns et al., 2002; Sigala and Logothetis, 2002; De Baene et al.,
2008). But it was not entirely clear whether and by how much
subjects’ enhanced sensitivity stemmed from visual discrimina-
bility of features or decision weights. We have shown that the dif-
ferential model sensitivity for facial features in our tasks could
not be fully explained by inhomogeneity of visual discriminabil-
ity across features, thus confirming flexible decision weights for
facial features. Importantly, the weights were proportional to the
visual discriminability of features in each task (Fig. 10H), consist-
ent with the idea of optimal cue integration that explains multi-
sensory integration behavior (Ernst and Banks, 2002; Oruç et al.,
2003; Drugowitsch et al., 2014). Our observation suggests that
face recognition is compatible with Bayesian computations in
cue combination paradigms (Gold et al., 2012; Fetsch et al.,
2013). It is an important future direction to test whether the rec-
ognition of other object categories also conforms to such optimal
computations (Kersten et al., 2004). Moreover, neural responses to
object stimuli can dynamically change because of adaptation or ex-
pectation (Kaliukhovich et al., 2013), which can alter both the sen-
sory and decision-making processes (Mather and Sharman, 2015;
Witthoft et al., 2018). How decision-making processes adapt to
dynamic inputs is another important direction to be explored in the
future.

The quantitative characterization of behavior is pivotal for
linking computational mechanisms and neural activity as it
guides future research on where and how the spatiotemporal
integration of sensory evidence is implemented in the brain. Face
stimuli evoke activity in a wide network of regions in the tempo-
ral cortex with different levels of specialization for processing fa-
cial parts, view invariance, facial identity and emotions, as well as
social interactions (Freiwald and Tsao, 2010; Freiwald et al.,
2016; Sliwa and Freiwald, 2017; Hesse and Tsao, 2020; Hu et al.,
2020). Although neural activity in these regions is known to cau-
sally alter face recognition behavior (Afraz et al., 2006; Parvizi et
al., 2012; Moeller et al., 2017), the exact contribution to the deci-
sion-making process remains unresolved. Prevailing theories
emphasize the role of these regions in sensory processing, com-
monly attributing rigid selectivities to the neurons that are invar-
iant to behavioral goals. In these theories, flexible spatiotemporal

integration of evidence, as we explain in our model, is left to
downstream sensorimotor or association areas commonly impli-
cated in decision-making (Ratcliff et al., 2003; Cisek and Kalaska,
2005; Gold and Shadlen, 2007; Schall, 2019; Okazawa et al.,
2021). However, neurons in the inferior temporal cortex show
response dynamics that can reflect temporally extended decisions
(Akrami et al., 2009), and they may alter selectivity in a task-de-
pendent manner (Koida and Komatsu, 2007; Tajima et al., 2017),
challenging a purely sensory role for the inferior temporal neu-
rons and hinting at the potential contribution of these neurons
to flexible spatial and temporal integration. Future studies that
focus on the interactions between temporal cortex and down-
stream areas implicated in decision-making will clarify the role
of different brain regions. Our experimental framework provides
a foundation for studying such interactions by determining the
properties of spatiotemporal integration and making quantitative
predictions about the underlying neural responses.
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